

GEOTECHNICAL REPORT

Nation Rise Wind Farm Project Wind Turbine Generator Foundations

March 2019

TULLOCH Report No. 184022-20-2050-001

			Spint and	Minmoy Kaningo	Boli
Mar 29, 2019	4	Issued for Use Usman Khan		M. Kanungo	S. Hinchberger
Mar 21, 2018	3	Issued for Use	Usman Khan	M. Kanungo	S. Hinchberger
Feb 14, 2018	2	Issued for Use	Usman Khan	S. Hinchberger	S. Hinchberger
Jan 8, 2019	1	Revised for Permit	Usman Khan	S. Hinchberger	S. Hinchberger
Nov 2, 2018	0	Issued for Use	Usman Khan	S. Hinchberger	S. Hinchberger
Aug 22, 2018	А	Issued Draft	S. deBortoli, G. Liang	S. Hinchberger	S. Hinchberger
Date	Rev.	Status	Prepared By	Checked By	Approved By

80 Main St. West Huntsville, ON P1H 1W9 T. 705 789.7851 F. 705 789.7891 TF. 877 535.0558 huntsville@TULLOCH.ca

WWW.TULLOCH.ca

March 29, 2019 18-4022

EDP Renewables North American LLC

808 Travis Street, Suite 700 Houston, Texas 77002

Attention: Ryan McDonner, Civil Engineering Manager

Re: Geotechnical Report for the Nation Rise Wind Farm Project

Dear Mr. McDonner:

Please find enclosed our Draft Geotechnical Report for the proposed 99.76 MW Nation Rise Wind Farm Project located in the Township of North Stormont, United Counties of Stormont, Dundas, and Glengarry, Ontario, Canada.

This report outlines the results of the geotechnical investigations, which were completed on the site and it provides geotechnical recommendations for the proposed wind turbine foundation design and construction.

We trust the enclosed is adequate for your needs at this time. If there is anything further where we can assist, please contact us at your convenience.

Sincerely, Tulloch Engineering Inc.

Sean Hinchberger, Ph.D., P.Eng. General Manager, Geotechnical Specialist

Table of Contents

1	INT	RODUCTION 1	I
2	SITE	E DESCRIPTION AND GEOLOGY1	ĺ
3	SITE	E INVESTIGATIONS AND METHODOLOGY2)
	3.1	Drilling Investigations - WTGs	
	3.2	Drilling Investigations – Private Access Roads and Laydown Yard	3
	3.3	Laboratory Tests4	ŀ
	3.4	Borehole Falling Head Tests4	ŀ
	3.5	MASW Soundings	;
	3.6	Plate Load Tests	;
4	SUE	BSURFACE CONDITIONS6	5
	4.1	General6	5
	4.2	Domain 1 – Shallow Bedrock6	5
	4.3	Domain 2 – Glacial Till overlying Bedrock	3
	4.4	Domain 3 – Soft Glaciomarine Clay over Till11	
	4.5	Bedrock Properties	,
	4.6	Borehole Falling Head Tests	
	4.6.1	, - <u>,</u>	
	4.6.2		
	4.7	Shear Wave Velocity	
	4.8	Plate Load Tests	
5	GEC	DTECHNICAL RECOMMENDATIONS	
	5.1	WTG Access Roads	
	5.2	Geotechnical Parameters	
	5.2.1		
	5.2.2	-	
	5.2.3		
	5.2.4	•	
	5.3	WTG Foundations	
	5.3. 5.3.2	 Foundations on Bedrock (Domain 1)26 Foundations on Till (Domain 2)	
	5.3.3		
	5.3.4		
	5.3.5		
	5.4	Lateral Capacity of Piles	
	5.5	Pile Group Impacts	
	5.6	Foundation Buoyancy	
	5.7	Other Piling Considerations	
	5.8	Backfill	5
	5.9	Open Cut Excavations	,

	5.10	Frost Protection	38
	5.11	Site Classification for Seismic Response	39
	5.12	Soil Corrosivity	39
	5.13	Laydown Yard	40
	5.14	Landslide Hazard, Associated Review and Monitoring	40
6	CLC	DSURE	42

List of Appendixes

- Appendix A Geotechnical Site Plan
- Appendix B Abbreviations, Terminology, and Principal Symbols Used
- Appendix C Borehole Logs
- Appendix D Laboratory Test Results
- Appendix E Borehole Falling Head Tests
- Appendix F Geophysics GPR International MASW Report
- Appendix G Plate Load Test Results
- Appendix H Cement Stabilized Soil Laboratory Test Results and Recommendations Memo
- Appendix I Report Limitations and Guidelines for Use

1 INTRODUCTION

The Nation Rise Wind Project is located 40 km southeast of Ottawa, Ontario, in the Municipality of North Stormont. The project comprises twenty-nine Enercon E138 (3.44 MW) wind turbines with an installed capacity of up to 99.76 MW and associated infrastructure including a 230 kV/34.5 kV Substation, a Hydro One Network Inc. (HONI) interconnection structure, an expansion to an existing O&M building, one MET Tower, collector and transmission lines, and private and public access roads. The project is currently in the detailed engineering design phase.

TULLOCH Engineering Inc. (TULLOCH) was retained by EDP Renewables (the Client) to complete geotechnical site investigations for the proposed wind turbine generator (WTG) sites. The purpose of this geotechnical program was to evaluate the subsurface conditions at the WTG sites and to provide engineering recommendations for site earthworks, access road and foundation design.

Appendix A shows the site location and borehole plan. A list of abbreviations, terminology and principal symbols used throughout this report are included in Appendix B. The following report sections describe the site geology, the investigation methodology, results and engineering recommendations for the project.

2 SITE DESCRIPTION AND GEOLOGY

Based on the Surficial Geology of Southern Ontario Maps as published by the Ontario Geological Survey (i.e., OGS Map 2140A), the site surficial geology varies from exposed bedrock, to glacial till and fine-textured glaciomarine deposits. The bedrock consists of limestone, dolomite, shale, arkose and sandstone of the Ottawa Group (OGS 2011). The bedrock is exposed (i.e., outcropping) mainly along the western boundaries of the project in an area roughly bounded by Crysler, Cannamore and Connaught, ON. Bedrock is also locally exposed east of the South Nation River near Payne Crossing and along Berwick Rd. The glaciomarine deposits primarily consist of silt and clay, with minor sand and gravel; These sediments are massive to well laminated in structure and are found mainly along the South Nation River (OGS 2010) and its tributaries. The glacial till consists of poorly sorted clay, silt, sand and gravel with occasional cobbles and boulders. TULLOCH did not observe any evidence of joint widening of the rocks by dissolution or sinkholes. The shale and dolomitic bedrock found at the project site is generally less susceptible to dissolution in comparison to pure limestone. The high Rock Quality Designation (RQD) values and high-water table indicate insignificant karst features in the bedrock.

1

3 SITE INVESTIGATIONS AND METHODOLOGY

3.1 Drilling Investigations - WTGs

Geotechnical investigations were completed by TULLOCH for the Wind Turbine Generators (WTGs) between April 27th and June 4th, 2018. The field work consisted of advancing thirty-three (33) boreholes referenced as Boreholes WTG-01 to WTG-58 through the overburden to borehole termination at least 3 m into bedrock. It is noted that the turbine numbers are discontinuous. Prior to commencing the drilling operations, TULLOCH completed utility locates for the boreholes through Ontario One Call. Additionally, to ensure safe operations, TULLOCH staff and subconsultants reviewed a project Health and Safety Plan and held daily tailgate health and safety meetings at the beginning of each day prior to commencing the field work. The applicable landowners were notified of the drilling activities at least 24 hrs prior to accessing the WTG boring locations.

The boreholes were advanced through the overburden and into bedrock using either a CME55 or a CME850 track-mounted drill rig owned and operated by Marathon Drilling Co. Ltd.. Both drill rigs were equipped with 200 mm diameter continuous flight hollow stem augers, standard soil sampling equipment and N-size casing and double tube core barrels (NQ2). Water was supplied for rock coring and intermittent wash boring using two track mounted water totes. Soil samples were obtained at regular intervals with a 51 mm outside diameter split spoon barrel in conjunction with Standard Penetration Tests (SPT) conducted according to ASTM D1586. The sampling was generally conducted at 0.6 m intervals in the upper 3.7 m of the overburden, and at 1.52 m intervals below that, using an automatic safety hammer. Field vane tests (ASTM D2573) were also conducted in all boreholes using a standard NX vane to measure the undrained shear strength of the cohesive soils. Thinwalled Shelby tube samples were also retrieved in accordance with ATSM D1587 to perform oedometer consolidation tests on undisturbed samples of the cohesive soils. All boreholes were advanced at least 3 m into the bedrock; rock cores were retrieved with a NQ2 core barrel.

Standpipe piezometers were installed in all boreholes drilled at the WTG locations to measure the groundwater levels and to conduct falling head permeability tests. Typically, standpipe piezometers were installed in the soil strata at 7.62 m below ground surface (mbgs); occasional piezometers were installed within the bedrock. The typical piezometer installation involved the following:

• Boreholes were backfilled to 7.62 mbgs with bentonite pellets.

- A 38.1 mm (1.5-inch) or 51 mm (2.0-inch) diameter PVC standpipe with a 3.05 m (10 ft) long screen was placed in the borehole; the annular space between the standpipe and borehole was backfilled with silica sand to 0.31 m above the top of the standpipe screen,
- Then bentonite pellets were placed in the borehole to seal around the standpipe from the top of the sand pack to the surface.

After completing the piezometer installations, a lockable steel casing was installed over the above ground portion (stick-up) of the piezometer riser at WTG-12, -16, -18, -20, -21 and -23. At the remaining WTG locations, a 4-inch PVC casing with lockable J-plug was installed over the stick-up. All piezometer stick-ups were secured with padlocks and they were flagged with 2.44 m – 3.05 m poles with high visibility flagging. Piezometer information for each of the WTG locations can be found on the individual borehole logs located in Appendix C.

The drilling, soil sampling, and piezometer installation were completed under the full-time supervision of a TULLOCH representative, who logged the drilling operations, identified the soil samples as they were retrieved, logged the bedrock core and supervised the piezometer installation. Initial groundwater measurements were recorded 24 hours after installation and additional water level readings were taken after the installations as noted in Section 4 of this report. The recovered soil samples were sealed in plastic bags and the bedrock cores were placed in core boxes and both were transported to TULLOCH's CCIL¹ Certified Laboratory in Sault Ste Marie, ON, for detailed examination and testing. All samples will be stored in our laboratory for six (6) months and then disposed of unless directed otherwise. The results of the drilling campaign are summarized on the borehole logs in Appendix C.

3.2 Drilling Investigations – Private Access Roads and Laydown Yard

In addition to the WTG boreholes, seventeen boreholes were drilled at the Nation Rise site to provide subsurface information for access road design. These boreholes, labeled BH PSR-1 to BH PSR-17, were advanced using hollow stem augers and a CME 55 drill rig to depths ranging from 0.58 m to 4.27 m. Continuous split spoon samples were retrieved in conjunction with Standard Penetration Tests (ASTM D1586) while advancing the boreholes.

3

¹ Canadian Council of Independent Laboratories

Most of these boreholes were drilled to a depth of 3.66 m except where auger refusal was encountered before reaching the planned depth.

Lastly, two (2) boreholes were drilled at the laydown yard site. These boreholes, labelled BH LD-1 and BH LD-2, were also drilled using a hollow stem auger and a CME-55 drill rig to auger refusal at 2.44 m and 3.2 m depth. Similarly, continuous split spoon samples were retrieved in conjunction with Standard Penetration Tests (ASTM D1586)

Detailed borehole logs are included in Appendix C.

3.3 Laboratory Tests

Table 3-1 summarizes the soil and rock laboratory tests conducted for this geotechnical investigation program and the corresponding ASTM standards. Select samples were also sent to ALS Laboratories for corrosivity testing. Detailed laboratory test reports are attached in Appendix D.

Item No.	Test	Number of Tests	ASTM Standard
1	Sieve Analysis	8	ASTM D422
2	Hydrometer Analysis	3	ASTM D7928
3	Atterberg Limits	19	ASTM D4318
4	Moisture Content	161	ASTM D2216
5	Oedometer Consolidation	4	ASTM D2435
6	Unconfined Compressive Strength on Rock	6	ASTM D2166

Table 3-1: Summary of Soil/Rock Laboratory Testing Program

3.4 Borehole Falling Head Tests

Falling head hydraulic conductivity tests (i.e., slug tests) were conducted between July 5-7, 2018 on the piezometers installed in the WTG boreholes. The falling head tests provide an estimate of the hydraulic conductivity of the soil or bedrock layer(s) intercepted by the piezometer screen. The hydraulic conductivity estimated from the falling head tests were used for permitting purposes and to evaluate the dewatering requirements during the construction phase. These tests were completed in accordance with ASTM D4044-15; the following bullets summarize the methodology:

• In each piezometer, the water level depth and piezometer depth were measured using a Solinst Model 101B flat tape water level meter.

- A Solinst Model 3001 LTC Levellogger Edge transducer was inserted in the piezometer situated 60 cm from the piezometer tip. The Levellogger was set to record water depth at 0.5 sec intervals.
- For the 38 mm outside diameter (O.D.) piezometers, 3 L of water was poured into the piezometer to introduce a near instantaneous rise in the water level; 6 L was poured into the 51 mm O.D. piezometers.
- The water level in the piezometer was simultaneously monitored using the Levellogger and flat tape water level meter until the change in the piezometer water level reduced to 30% of the original slug value.
- The data was reviewed for consistency, saved in a separate file denoted by the borehole # and subsequently interpreted using Hvorslev's method.

Slug tests were conducted in the piezometers installed in bedrock at boreholes WTG-01, -04, -06, -07, -41, and -48) and in glacial till at boreholes WTG-05, -16, -28, -43, -44, -46. The results of the falling head tests are presented in Section 4 and the test data is included in Appendix E.

3.5 MASW Soundings

A series of seven MASW (Multi-channel Analysis of Surface Waves) soundings were done between July 4th - 6th at WTG-02, -05, -12, -16, -21, -44, and -57. The MASW data is discussed further in Section 4.7 of this report. Appendix F contains a report describing the geophysical methods and equipment used to conduct these soundings and the results.

3.6 Plate Load Tests

Lastly, TULLOCH completed plate load testing at the Nation Rise site for road design and to supplement the data collected during the drilling program. These tests were done in general accordance with ASTM D1195M-09. A 301 mm diameter steel plate was loaded to 11 kN in increments of 2.2 kN and the settlement corresponding to each load increment was measured using three dial gauges. The data provided a measurement of the modulus of subgrade reaction of the subgrade soils, which was used to estimate the resilient modulus.

4 SUBSURFACE CONDITIONS

4.1 General

Detailed subsurface profiles are summarized in the borehole logs attached in Appendix C. It is noted that the soil boundaries indicated on the borehole logs are inferred from discontinuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones to support geotechnical design and they should not be interpreted as exact planes of geological change. Third parties relying on the data presented in the logs should account for the approximate nature of these boundaries during design. All soils have been classified using the Unified Soil Classification System (ASTM D2487). Based on the geotechnical data collected, three geologic domains were encountered at the Nation Rise site as summarized below.

Domain 1: In this domain, the subsurface conditions consist of approximately 50 cm of topsoil overlying 0.5 m to 3 m of either Sandy Clayey Silt Till or soft intermediate plasticity Silty Clay (CI) overlying shaly limestone bedrock. Approximately 30% of the WTGs are in this domain including WTG-02 -04, -06, -12, -25, -27, -32, -41, -48 and -56.

Domain 2: The subsurface conditions in Domain 2 consist of approximately 50 cm of top soil overlying an average of 8 m of compact to dense Silt Till (ML) or Gravelly Sand Till (SG) overlying shaly limestone bedrock. Approximately 36% of the WTGs are situated in this domain, including WTG-05, -07, -10, -11, -16, -28, -29, -35, -43, -46, -52, -57 and -58.

Domain 3: The third domain comprises approximately 50 cm of top soil overlying an average of 12 m of soft to firm intermediate plasticity Silty Clay overlying either glacial till over bedrock or directly overlying shaly limestone bedrock. Approximately 34% of the WTGs are situated in this domain including WTG-01, -09, -18, -20, -21, -23, -38, -44, -47 and -54.

The geologic domains are described in detail in the following sections.

4.2 Domain 1 – Shallow Bedrock

Table 4-1 summarizes the stratigraphy in Domain 1. In this domain, the depth to bedrock varies from 0.76 m at BH-WTG-04 to 4.95 m at BH-WTG-41. The overburden soils overlying bedrock comprise a thin veneer of intermediate plasticity Silty Clay and Silt Till with some sand and gravel and occasional cobbles. In BH-WTG-56, the overburden comprises a Gravelly Sand Till. Based on the SPT 'N' values, which varied from 0 to 12 blows/30 cm, the Silty Clay varies from very soft to stiff whereas the Till materials are loose

to very dense with 'N' values between 6 and 63 blows/30 cm. The groundwater levels in this domain are listed in Table 4-2. Summarizing, based on the 1st round of readings (July 5, 2018), the groundwater level varies from 0.79 mbgs at WTG-41 to 2.62 mbgs at WTG-04. During the 2nd round readings (Sept. 7, 2018), the depth to the groundwater varied from 1.6 mbgs at WTG-12 to 2.8 mbgs at WTG-6 and WTG-56.

The bedrock is generally of fair to good rock mass quality. Detailed rock properties are discussed in Section 4.5.

	Elevation	Bedrock			Overburden Soil				
Borehole	(m)	Depth (mbgs) ¹	RQD Rock Mass Quality		Type ² ^{'N'} Values		W _N (%)	Consistency	
WTG-02	70.1	2.13	53-95	Fair –Excellent	CI over Till (ML)	5-18	22-29	Firm – V. Stiff	
WTG-04	81.9	0.76	52-73	Fair	CI over Till (ML)	7	_	Firm	
WTG-06	77.2	1.88	55-93	Fair – Excellent	CI over Till (ML)	8-82	_	Firm – Hard	
WTG-12	70.8	3.81	28-78	Poor – Good	CI	0-7	_	Soft – Firm	
WTG-25	70.9	2.13	23-94	Poor – Excellent	Till (ML)	10-14	_	Stiff	
WTG-27	79.3	1.22	68-83	Fair – Good	Till (ML)	18-41	_	V. Stiff – Hard	
WTG-32	73.1	4.11	76-90	Good	CI over Till (ML)	6-20	_	Firm – V. Stiff	
WTG-41	73.9	4.95	76-87	Good	CI	3-6	_	Soft – Firm	
WTG-48	82.3	1.0	38-50	Poor – Fair	CI	9-12	_	Firm – Stiff	
WTG-56	87.3	2.94	29-73	Poor – Good	Till (SG)	6-63	_	Compact – V. Dense	

Table 4-1: Summary of Soil and Rock Parameters in Domain 1

Note: ¹mbgs refers to meter below ground surface, ²CI - Intermediate Plasticity Clay; Till (CI) – Clayey Till; Till (SG) – Granular Till, RQD refers to Rock Quality Designation

Borehole	Elevation (m)	Initial (mbgs) ¹	Round 1 ² (mbgs)	Round 2 ³ (mbgs)
WTG-02	70.1	1.24	1.95	2.6
WTG-04	81.9	2.09	2.62	2.5
WTG-06	77.2	1.70	2.02	2.8
WTG-12	70.8	0.78	0.98	1.6
WTG-25	70.9	1.86	2.28	2.8
WTG-27	79.3	0.49	2.13	2.4
WTG-32	73.1	0.77	1.14	2.2
WTG-41	73.9	0.34	0.79	2.3
WTG-48	82.3	0.72	1.06	2.4
WTG-56	87.3	0.82	1.07	2.8

Table 4-2: Groundwater Levels in Domain 1

Note: ¹mbgs refers to meter below ground surface, ²Round 1 readings were taken July 5, 2018. ³Round 2 readings were taken Sep 7, 2017.

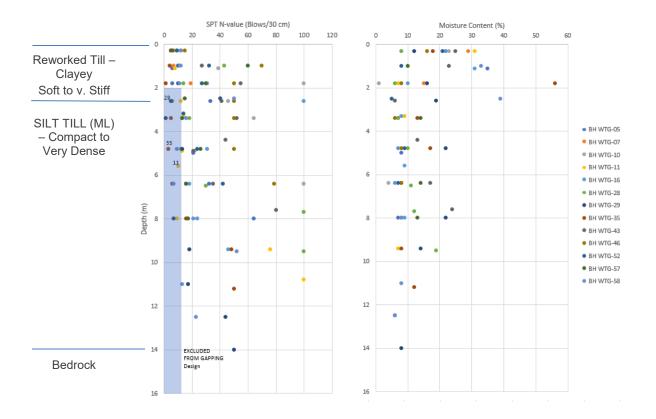

4.3 Domain 2 – Glacial Till overlying Bedrock

Table 4-3 summarizes the stratigraphy in Domain 2; Tables 4-4 and 4-5 list the results of grain size distribution tests and Atterberg limits tests on the Gravelly Sand Till and Silt Till materials encountered in this domain. The predominant soil in Domain 2 consists of glacial till overlying relatively deep bedrock compared to Domain 1. Figure 4-1 illustrates the generalized soil profile. The strength profile has been selected based on subtracting half a standard deviation from the mean value. Referring to Table 4-3, the depth to bedrock in this domain varies from 5.28 m at BH-WTG-07 to 14.32 m at BH-WTG-29. Two different till materials were encountered within this domain; The first material is a Gravelly Sand Till with occasional cobbles and trace to no fines. The grain size distribution for this material is summarized in Table 4-4 for soil samples retrieved from BH-WTG-16, -28, -29, -43, -57, and -58. The second material is a Silt Till with some sand, trace gravel, occasional cobbles and trace to no clay. One grain size distribution test was done in this material, see BH-WTG-29 in Table 4-4. Based on the Atterberg Limit tests in Table 4-5, this material is a low plasticity silt. The SPT 'N' values in the till materials vary from 5 to 50 blows/30cm indicting the materials are loose to very dense.

Table 4-6 lists the groundwater level measurements taken since the end of the field program. Based on the round 1 readings, the groundwater depth in Domain 2 varies from 0.65 m at BH WTG-58 to 4.38 m at BH WTG-29. During the round 2 readings, the depth varied from 1.6 m at WTG-16 to 4.9 m at WTG-46. The bedrock rock mass quality varies

8

from fair to good as indicated in Table 4-3; Detailed rock properties are discussed in Section 4.5.

Figure 4-1: Typical Subsurface Profile – Domain 2

Table 4-3:	Summary o	f Soil and R	ock Parameters	in Domain 2
------------	-----------	--------------	----------------	-------------

		Bedrock			Overburden Soil			
Borehole	Elevation (m)	Depth (mbgs)1	RQD	Rock Mass Quality	Туре2	ʻN' Values	Moisture Content	Consistency
WTG-05	70.4	8.53	65-99	Fair- Excellent	Till (ML)	6-64	7-35	Loose – Very Dense
WTG-07	72.9	5.28	75-98		Till (ML) over Till (SG)	7-40	15 - 29	Loose – Dense
WTG-10	74.8	6.68	83-94	Good – Excellent	Till (ML)	5-50	1 - 23	Loose – Medium Dense
WTG-11	74.0	10.87	76-96	Good- Excellent	Till (ML)	>50	7	Very Dense
WTG-16	69.2	9.83	43-65	Poor – Fair	Till (ML)	6-50	8-9	-

		Bedrock				Overburden Soil				
Borehole	Elevation (m)	Depth (mbgs)1	RQD	Rock Mass Quality	Туре2	ʻN' Values	Moisture Content	Consistency		
WTG-28	73.6	11.02	30-93	Poor – Excellent	Till (ML)	5-50	6-10	Loose – Very Dense		
WTG-29	74.1	14.32	56-98	Fair – Excellent	Till (ML) over Till (SG)	1-50	6-18	Very Loose – Very Dense		
WTG-43	86.8	7.46	19-95	V. Poor - Excellent	Till (ML) over Till (SG)	12-50	19	Medium Dense – Very Dense		
WTG-46	86.2	6.55	67-95	Fair – Excellent	Till (ML)	15-50	6-7	Medium Dense – Very Dense		
WTG-52	75.8	7.70	51-73	Fair	Till (SG) over Till (ML)	9-42	5 - 21	Loose – Dense		
WTG-57	86.1	8.78	57-67	Fair	Till (ML) over Till (SG)	6-50	11-12	Loose – Very Dense		
WTG-58	68.7	13.39	96-98	Excellent	Till (ML) over Till (SG)	7-50	6-25	Loose – Very Dense		

Note: ¹mbgs refers to meter below ground surface, ²CI - Intermediate Plasticity Clay; Till (CI) – Clayey Till; Till (SG) – Granular Till

Borehole	Elevation (m)	Sample	Depth (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
WGT-16	69.2	SS8	9.14	33	63	4	
WTG-28	73.6	SS9	9.14	9	91	0	
WTG-29	74.1	SS4	2.29	0	6	92	2
WTG-29	74.1	SS11	12.19	51	49	0	
WTG-43	86.8	SS9	7.47	9	81	10	
WTG-57	86.1	SS8	7.62	9	90	1	
WTG-58	68.7	SS11	12.19	49	21	24	6

Table 4-5: Atterberg Limit Results – Silt Till (ML)

Borehole	Elevation (m)	Sample	Depth (m)	Moisture	Liquid Limit	Plastic Limit	Plasticity Index
WTG-09	70.1	SS6	9.14	6.7	10	15	5
WTG-11	74.0	SS9	7.62	8	10	16	6
WTG-16	69.2	SS7	7.62	8	10	16	6
WTG-28	73.6	SS5	3.05	_	-	-	-
WTG-46	86.2	SS7	5.94	7.4	11	16	5

TULLOCH Engineering

Borehole	Elevation (m)	Sample	Depth (m)	Moisture	Liquid Limit	Plastic Limit	Plasticity Index
WTG-58	68.7	SS3	1.52	5.7	22	42	20
WTG-58	68.7	SS7	6.10	5.7	10	16	6

Table 4-6: Groundwater Levels in Domain 2

Borehole	Elevation (m)	Initial (mbgs)	Round 1 ² (mbgs)	Round 2 ³ (mbgs)
WTG-05	70.4	0.95	1.40	3.3
WTG-07	72.9	1.16	1.43	2.3
WTG-10	74.8	1.27	1.45	3.2
WTG-11	74.0	0.82	1.64	2.7
WTG-16	69.2	0.50	0.98	1.6
WTG-28	73.6	4.73	NR	2.6
WTG-29	74.1	4.12	4.38	4.5
WTG-43	86.8	0.70	NR ¹	3.0
WTG-46	86.2	1.82	0.96	4.9
WTG-52	75.8	2.42	2.66	2.8
WTG-57	86.1	1.53	NR ¹	3.2
WTG-58	68.7	1.19	0.65	1.9

Notes: ¹No access to borehole location. ²Round 1 readings were taken July 5, 2018. ³Round 2 readings were taken Sep 7, 2017.

4.4 Domain 3 – Soft Glaciomarine Clay over Till

Table 4-7 summarizes the stratigraphy in Domain 3 and Table 4-8 lists the results of field vane tests performed in the upper very soft to stiff Silty Clay materials. Figures 4-2 and 4-3 show, respectively, the generalized ground profile and the field vane shear strength profile for Domain 3. Summarizing, subsurface conditions in this domain consists of very soft to stiff intermediate plasticity Silty Clay overlying either Silt Till or Gravelly Sand Till and then bedrock.

Referring to Figure 4-3, the field vane shear strength of the Silty Clay deposit varies from a maximum of between 40 and 60 kPa in the upper 20% of the deposit thickness (i.e. 0 - 0.2D) to between 20 and 40 kPa within a soft to firm zone below the crust between 45% and 60% of the deposit depth, D. The undrained shear strength increases with depth at a rate of between 2.5 and 5 kPa/m below the soft zone. Based on the grain size distribution tests summarized in Table 4-9, the Silty Clay consists of approximately 1% sand, 36% silt and 63% clay; the Gravelly Sand Till consists of 22 to 46% gravel, 49 to 63% Sand and less than 2% silt and clay. Based on RQDs in the bedrock, the rock mass quality generally

varies from fair to very good, with occasional zones of poor rock mass quality. As noted above, the mechanical properties of the bedrock are discussed in Section 4.5.

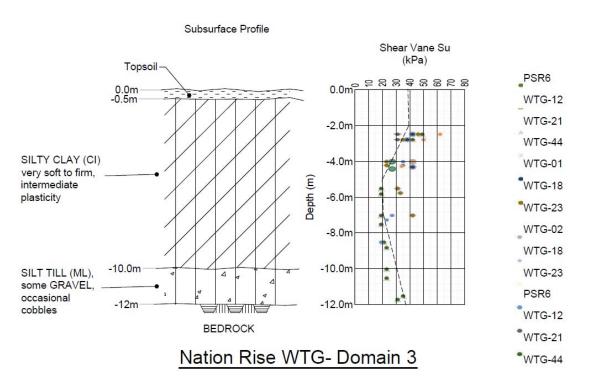
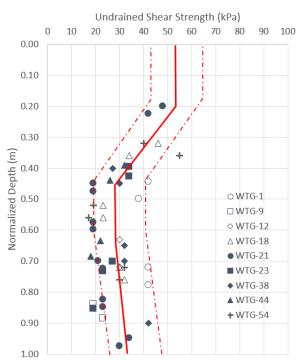

Referring to Table 4-8, based on peak and remoulded field vane shear strengths, the sensitivity of the Silty Clay material varies from 1.8 to 9.0 for WTGs -01, -09, -12, -18, -38, -44, and -54; the average sensitivity is 8.3. At these turbine locations, this material is generally medium sensitive to sensitive, classified per Section 3.1.3.4 of the Canadian Foundation Engineering Manual. At WTGs -21 and -23, however, the sensitivity varies from 7.5 to 27.0; the average sensitivity is 13.1. The data suggests that the Silty Clay material is extra sensitive at turbines located closest to the center of the project site and closest to the South Nation River. The material is less sensitive with distance from the river. At WTG-23, the sensitivity exceeds 25 below an estimated depth of 7.0 m. Based on the Atterberg limits listed in Table 4-10, the liquidity index varies from 1.33 to 1.93, which is consistent with the sensitivity values reported in Table 4-8. The sensitivity is rated based on Section 3.1.3.4 of the Canadian Foundation Engineering Manual (CFEM).

Table 4-11 lists the groundwater level measurements taken since the end of the field program. Based on two rounds of readings, the groundwater levels in Domain 3 vary from 0.11 m above the ground surface at BH-WTG-18 (July 5, 2018) to 2.5 m below the ground surface at BH-WTG-29 (Sept 7, 2018). Based on Table 4-11, slight artesian conditions are present in the bedrock at BH-WTG-18 and -21. The initial water level readings in BHs WTG-18 and -21 were 0.37 m and 0.47 m, respectively, above the ground surface indicating somewhat higher artesian conditions at these locations during the spring compared to the summer and fall. The artesian conditions are in the bedrock only, however. For turbine design, the designer should assume the groundwater table is at the ground surface for the WTGs with artesian pressure in the bedrock.


Lastly, Table 4-12 summarizes the results of 1-dimensional oedometer consolidation tests conducted on the Silty Clay material. These test results indicate that the over-consolidation ratio (OCR) of the Silty Clay varies from 1 to 3 depending on the turbine location, the depth of the sample tested, and the methodology used to interpret the preconsolidation pressure of the material. Generally, the OCR of the material is between 1 and 1.4 at a depth of between 4.8 and 5.1 m in BH-WTG-21 and WTG-44. The OCR values confirm the presence of a normally consolidated (NC) to slightly over-consolidated material within the deposit below the firm to stiff surficial crust. Within the NC zone, the undrained shear strength, s_u , to preconsolidation pressure, p'_c , ratio is estimated to be between 0.2 and 0.28, which is within the normal range for the glaciomarine clays in the Ottawa area. The SPT tests gave

'N' values ranging from 0 to 4 blows/30 cm in the Silty Clay deposit indicating a very soft to soft consistency.

As noted in Appendix D, the hydraulic conductivity of the Silty Clay varies between 1.5×10^{-7} and 6.1×10^{-7} cm/s for the range of *in situ* stress in the ground.

Figure 4-2: Idealized Subsurface Profile – Domain 3

Figure 4-3: Field Vane Shear Strength Profile – Domain 3

Table 4-7: Summary of Soil and Rock Parameters in Domain 3

	Elevation		Bedr	ock		0	verburde	n Soil	
Borehole	(m)	Depth (mbgs)¹	RQD	Rock Mass Quality	Type ²	Thickness (m)	ʻN' Values	Wℕ (%)	Consistency
WGT-01	68.1	5.49	87	Good	CI	5.49	1-8	35-38	Soft to Firm
			68 -		CI	6.55	0-5	39-41	V. Soft to Firm
WTG-09	70.1	7.67	88	Good	Till (ML)	1.12	15	-	Dense
			45		CI	7.62	0-1	-	-
WTG-18	67.3	15.4	45 - 82	Fair – Good	Till (ML)	7.78	50	8-10	V. Dense
WTG-20	67.6	9.60	26 - 98	Poor – Excellent	CI	6.10	0-4	-	_
			50 -		CI	19.19	0-8	41	V. Soft to Firm
WTG-21	67.7	16.0	30 - 85	Fair – Good	Till (ML)	3.81	14-50	-	Dense to V. Dense
					CI	3.05	1-5	-	V. Soft to Firm
WTG-35	73.2	11.48	31 - 86	Poor – Good	Till (CL)	4.57	3-6	-	Soft to Firm
			00		Till (ML)	3.86	15-50	-	V. Dense
			73 -		CI	7.0	0-4	-	V Soft to Soft
WTG-38	73.0	11.27	73 - 82	Good	Till (ML)	4.27	15-50	_	Dense to V. Dense

TULLOCH Engineering

WTG-44	69.4	6.24	7- 100	V. Poor – Excellent	CI	6.24	0-8	_	V. Soft to Firm
					CI	9.14	0-9	-	V. Soft to Firm
WTG-47	75.9	12.80	18 - 80	V. Poor – Good	Till (ML- SG)	3.66	27-50	_	V. Dense
			35 -		CI	7.62	0-9	Ι	V. Soft to Firm
WTG-54	69.6	11.07	100	Poor-Excellent	Till (SG)	3.45	11-50	-	V. Dense

Note: ¹mbgs refers to meter below ground surface, ²CI - Intermediate Plasticity Clay; Till (CI) – Clayey Till; Till (SG) – Granular Till

Turbine	Elevation (m)	Depth (mbgs)	Normalized Depth (m)	Field Vane Peak Strength (kPa)	Remoulded Strength (kPa)	Sensitivity
		2.44	0.44	42	10	4.2
WGT-01	68.2	2.74	0.50	38	10	3.8
WGI-UI	00.2	3.96	0.72	42	9	4.7
		4.27	0.78	42	11	3.8
WTG-09	70.1	5.5	0.84	19	5	3.8
WIG-09	70.1	5.79	0.88	23	5	4.6
WTG-12	70.8	2.4	0.63	30	4	7.5
WIG-12	70.0	2.74	0.72	30	5	6.0
		2.44	0.32	46	15	3.1
		2.74	0.36	34	19	1.8
WTG-18	67.0	3.96	0.52	23	8	2.9
WIG-18	67.3	4.27	0.56	23	8	2.9
		5.49	0.72	30	11	2.7
		5.79	0.76	32	11	2.9
		2.44	0.20	48	7	6.9
		2.74	0.22	42	8	5.3
		5.49	0.45	19	2	9.5
		5.79	0.47	19	2	9.5
		7.01	0.57	19	2	9.5
WTG-21	67.7	7.3	0.60	19	2	9.5
WIG-21	07.7	8.53	0.70	21	2	10.5
		8.84	0.72	23	2	11.5
		10.06	0.82	23	2	11.5
		10.36	0.85	23	2	11.5
		11.58	0.95	34	2	17.0
		11.89	0.97	30	4	7.5
	67.3	3.96	0.40	34	3	11.3
WTG-23	07.3	4.27	0.43	34	4	8.5

Table 4-8: Field Vane Shear Test Results

TULLOCH Engineering

Turbine	Elevation (m)	Depth (mbgs)	Normalized Depth (m)	Field Vane Peak Strength (kPa)	Remoulded Strength (kPa)	Sensitivity
		7.01	0.70	27	1	27.0
		7.32	0.73	23	1	23.0
		8.53	0.85	19	1	19.0
		2.44	0.40	27	3	9.0
		2.74	0.45	30	5	6.0
WTG-38	73.0	3.96	0.65	32	4	8.0
		4.27	0.70	32	4	8.0
		5.49	0.90	42	10	4.2
		2.44	0.39	32	11	2.9
WTG-44	69.4	2.74	0.44	26	11	2.4
WIG-44	09.4	3.96	0.63	22	3	7.3
		4.27	0.68	18	5	3.6
		2.44	0.32	40	6	6.7
		2.74	0.36	55	9	6.1
	<u> </u>	3.96	0.52	19	2.5	7.6
WTG-54	69.6	4.27	0.56	17	4	4.3
		5.49	0.72	32	4	8.0
		5.79	0.76	30	6	5.0

Table 4-9: Grainsize Distribution Results in Domain 3

Borehole	Ground Elevation (m)	Sample	Material	Depth (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
WTG-35	73.2	SS9	Till (SG)	10.67	22	77	1	
WTG-44	69.4	SS3	CI	1.52	0		36	63
WTG-47	75.9	SS11	Till (SG)	12.19	46	52	2	
WTG-54	69.6	SS8	Till (SG)	9.14	27	71	2	

Table 4-10: Atterberg Limits - Silty Clay (CI) Deposit

Borehole	Elevation (m)	Sample	Depth	WN	W∟	WP	IP	l.
WTG-01	68.2	SS4	3.1-3.6	60.5	47	22	25	1.54
WTG-09	70.1	SS6	4.6-5.1	64.4	53	24	29	1.39
WTG-18	67.3	SS6	4.6-5.2	91.9	67	25	42	1.56
WTG-20	67.6	SS5	3.1-3.6	86.1	59	26	33	1.82
WTG-21	67.7	SS10	10.7-11.3	68.3	51	20	31	1.56
WTG-23	67.3	SS8	7.6-8.2	75.7	63	24	39	1.33
WTG-38	73.0	SS5	4.6-5.2	52.8	37	20	17	1.93
WTG-47	75.9	SS7	6.1-6.7	39.4	28	16	12	1.71

WTG-54	69.6	SS4	3.1-3.7	65.3	50	22	28	1.70
WTG-58		SS3	1.5-2.1	33	42	22	20	0.65

Table 4-11: Groundwater Levels in Domain 3

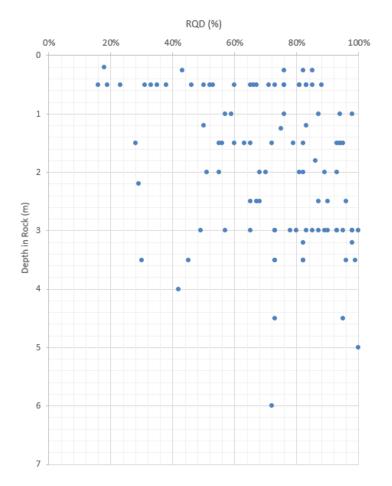
Borehole	Elevation (m)	Initial (mbgs)	Round 1 (mbgs)	Round 2 (mbgs)
WTG-01	68.2	0.95	1.06	1.3
WTG-09	70.1	1.27	1.45	1.8
WTG-18	67.3	-0.37	-0.11	0.5
WTG-20	67.6	0.74	1.22	1.7
WTG-21	67.7	-0.47	1.03	1.1
WTG-35	73.2	0.85	1.22	1.7
WTG-38	73.0	0.64	0.90	2.5
WTG-44	69.4	0.38	0.44	1.4
WTG-47	75.9	1.03	0.97	1.9
WTG-54	69.6	0.88	1.22	1.9

Notes: Round 1 readings were taken July 5, 2018. Round 2 readings were taken Sep 7, 2017.

Table 4-12: Oedometer Consolidation Test Results

Borehole	Sample	Material	W _ℕ (%)	p_c^\prime (kPa)	σ_{vo}^{\prime} (kPa)	OCR	Cr	Cc
WTG-23	TWS 6	CI	55.7	105-120	77.5	1.9-2.1	0.1	1.2
WTG-21	TWS 5	CI	56.8	65-95	0.9	1.1-1.4	0.1	0.75
SUB-1	TWS 6	CI	53.1	75-120	51.8	1.9-3.0	0.1	0.62
WTG-44	TWS 6	CI	45.1	55-100	71.3	1.0-1.8	0.02	0.2

4.5 Bedrock Properties


The bedrock at the site consists of grey to black, thinly bedded, fine-grained Shaly Limestone. Based on the rock core logs in Appendix C, the Rock Quality Designation (RQD) values vary significantly but are generally between 25-70% in the upper meter of the bedrock and between 55-100% below that. The Rock Mass Rating (RMR) for the rock mass is about 57 based the RMR classification system (Bieniawski, 1972). As a result, the rock mass quality is judged to be fair to good.

The intact unconfined compressive strength (UCS) of the bedrock is in the range of 66 MPa to 94 MPa with an average value of 80 MPa based on the test results listed in Table 4-13. Figure 4-4 show the summary of the RQD for WTG locations.

Sample	Measured Peak Load (kN)	Sample Diameter (mm)	Intact Compressive Strength σ_c (MPa)
WTG-01	142.8	47.1	82
WTG-04	164.1	47.0	94.6
WTG-23	165.5	47.3	94
WTG-25	84.0	47.45	47.5
WTG-41	124.1	47.46	70.2
WTG-44	115.7	47.2	66

Table 4-13: Unconfined Compressive Strength (UCS) Tests on Rock

Figure 4-4: Summary of the RQD of WTG Sites

4.6 Borehole Falling Head Tests

As noted in Section 3, Falling Head Tests were performed in piezometers installed in the WTG boreholes and the results are included in Appendix E. The following sections summarize the measured hydraulic conductivity values for the different soil units encountered during the investigation program.

4.6.1 Bedrock Hydraulic Conductivity

Table 4-14 presents the interpreted hydraulic conductivity of the bedrock at the Nation Rise site based on the borehole falling head test results. Summarizing, the lag time (T_L) for piezometers installed in bedrock varied from 1.6 seconds (s) to 205 s; the corresponding hydraulic conductivity varies between 1.6×10^{-2} and 3.2×10^{-4} cm/s, which is indicative of fractured bedrock.

Borehole	Length of Screen (cm)	Stratum	r (cm)	R (cm)	TL (s)	Hydraulic Conductivity, k (cm/s)
WTG-01	335	Bedrock	1.905	3.8	1.6	1.6×10 ⁻²
WTG-04	335	Bedrock	1.905	3.8	205	1.2×10 ⁻⁴
WTG-06	335	Bedrock	1.905	3.8	4.5	5.4×10 ⁻³
WTG-07	335	Bedrock	1.905	3.8	75	3.2×10 ⁻⁴
WTG-25	330	Bedrock	1.905	3.8	144	1.7×10 ⁻⁴
WTG-41	335	Bedrock	1.905	3.8	8	3.1×10 ⁻³
WTG-48	335	Bedrock	1.905	3.8	9	2.7×10 ⁻³

Table 4-14: Borehole Slug Test Results in Bedrock

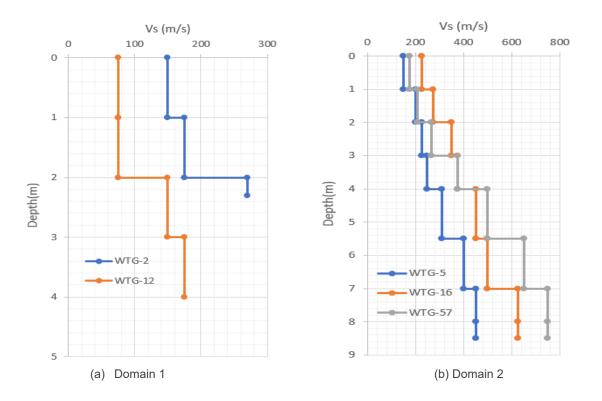
Note: r is the radius of the well casing. R is the radius of the well screen

4.6.2 Till Hydraulic Conductivity

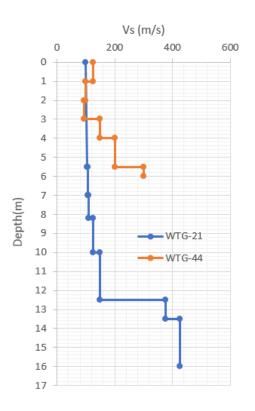
Table 4-15 summarizes the interpreted hydraulic conductivity of the Glacial Till (Till) unit at the Nation Rise site based on the borehole falling head tests. The measured lag time (T_L) in the till varied from 4.8 seconds (s) to 12,600 s; the corresponding hydraulic conductivity in the Gravelly Sand Till layers at BH-WTG-16 and BH-WTG-44 varies between 7×10^{-3} and 1.6×10^{-4} cm/s; the Silt Till hydraulic conductivity varies between 1.5×10^{-6} cm/s to 1.4×10^{-5} cm/s.

Borehole	Length of Screen (cm)	Stratum	r (cm)	R (cm)	TL (s)	Hydraulic Conductivity, k (cm/s)
WTG-05	335	Silt Till	1.905	10	4200	4.5×10 ⁻⁶
WTG-10	335	Silt Till	1.905	10	12600	1.5×10 ⁻⁶
WTG-16	335	Sandy Till	2.54	10	4.8	7.0×10 ⁻³
WTG-28	335	Silt Till	1.905	10	2640	7.2×10 ⁻⁶
WTG-43	335	Silt Till	1.905	10	6300	3.0×10 ⁻⁶
WTG-44	335	Sandy Till	1.905	10	150	1.6×10 ⁻⁴
WTG-46	335	Silt Till	1.905	10	3000	6.3×10 ⁻⁶
WTG-56	335	Silt Till	1.905	10	1320	1.4×10 ⁻⁵

Table 4-15:	Borehole S	Slug Test	Results in Till


4.7 Shear Wave Velocity

Seven (7) MASW soundings were conducted at the WTG sites to measure the shear wave velocity, V_s , of the soil deposits in the upper 30 m of the ground within the three geologic domains encountered. Figures 4-5 and 4-6 shows the interpreted V_s profiles at WTG-02,


-06, -12, -16, - 44 and -57 based on the MASW soundings. Refer to Appendix F for the detailed report. Summarizing:

- Domain 1: Two MASW soundings at WTG-02 and -12 indicate that the V_s is in the range of 75 m/s to 270 m/s for the Silty Clay and Silt Till soils overlying the bedrock.
- Domain 2: The MASW soundings at WTG-05, -16, and -57 indicate that the V_s is between 150 m/s and 500 m/s for the upper 4 m of the Till deposits in this domain and between 250 m/s and 750 m/s for the soil below 4 m depth.
- Domain 3: Two MASW soundings at WTG-21 and -44 in this domain indicate that the *V_s* is in the rage of 150 m/s to 200 m/s for the soft silty clay deposit.

The measured V_s in the bedrock is about 1900 m/s. This value was consistently obtained for the bedrock from all seven MASW sounding locations.

Figure: 4.5: Shear wave velocity profiles for Domains 1 and 2

Figure 4.6: Shear wave Velocity Profile Domain 3

4.8 Plate Load Tests

Lastly, the results of plate load tests are presented in Table 4-16. Refer to Appendix G for the plate load test results.

Test Pit	WTG Access Rd	Material	Subgrade Modulus (MPa)	Correlated M _R (MPa)	Correlated CBR
TP-PSR-4	WTG-16	Silt Till (ML)	54	24	2.3
TP-PSR-5	WTG-27	Silt Till (ML)	65	29	2.8
TP-PSR-6	WTG-38	Silty Clay (CL)	58	26	2.5
TP-PSR-7	WTG-44	Silt Till (ML)	20	9	0.9
TP-PSR-8	WTG-48	Silt Till (ML)	50	22	2.1
TP-PSR-9	WTG-52	Silty Sand (SM)	34	15	1.5
TP-PSR-10	WTG-56	Silty Sand (SM)	63	28	2.7
TP-PSR-12	WTG-57	Silty Sand (SM)	47	21	2
TP-PSR-14	WTG-35	Silty Clay (CL)	35	16	1.5
TP-PSR-16	WTG-25	Silt Till (ML)	70	31	3.0

Table 4-16: Plate load test results at private access roads

Note: MR is the resilient modulus of the subgrade. CBR is the California Bearing Ratio.

5 GEOTECHNICAL RECOMMENDATIONS

This section provides engineering recommendations for the WTG access roads, WTG foundation design and general site earthworks and construction.

5.1 WTG Access Roads

Based on the plate load test data summarized in Section 4, the WTG access roads can be designed using a resilient modulus, M_R , of 20 MPa for the subgrade soils. Table 5-1 provides recommended pavement structures for the WTG access roads based on the recommended M_R and the assessed equivalent standard axle loads (ESALs) provided by EDPR. The following pavement designs are based on the American Association of State Highway and Transportation Officials (AASHTO) Guide for Design of Pavement Structures (1993). Four pavement structures have been designed for the project as follows:

- Option 1: 400 mm of Granular B fill (OPSS 1010) overlain by 150 mm of Granular A fill (OPSS 1010) compacted to 98% SPMDD.
- Option 2: 500 mm of Granular B (OPSS 1010) overlain by 75 mm of Granular A (OPSS 1010) fill.
- Option 3: A non-woven geotextile (Terrafix 270R) and biaxial grid (Terrafix TBX2000) placed on the prepared subgrade, overlain by 200 mm of Granular B (OPSS 1010) and 150 mm of Granular A (OPSS 1010) fill; and
- Option 4: 200 mm of Cement Stabilized soil overlain by 150 mm of Granular A (OPSS 1010) fill compacted to 98% SPMDD. Refer to Appendix H for further detail regarding cement stabilized soil test results and construction specifications.

The preceding road options will require the following subgrade preparation. All topsoil should be stripped to expose the undisturbed native material. For Pavement Options 1 - 3, depending on the time of construction, there will be a need to adopt an observational approach for the subgrade preparation. If the clayey subgrade is dry and at or below 2% wet of the optimum moisture content (approx. 29%), then the subgrade should be proof rolled using a pad foot compactor and the prepared surface sealed using a smooth drum steel roller prior to constructing the pavement structure. A compaction target of 95% SPMDD should be adopted for dry subgrades. The existence of dry subgrade materials indicates the presence of a stiff crust, which will be beneficial for road construction.

If local zones of wet, weak or compressible materials of limited depth and extent are encountered, then the material should be removed and Select Subgrade Fill (OPSS² 1010) used to backfill the excavation and restore the ground to the subgrade design elevation. In some locations, the crust may be very thin or non-existent. If this situation exists, over excavation of soft or weak materials may degrade the subgrade rather than improve it and for these situations, the pavement structures defined as Options 3 or 4 should be used. The project will need to be careful not to over excavate in areas where the crust is thin and underlain by very soft clay.

For Option 4, the subgrade preparation will be significantly different than for Options 1-3. Road construction will consist of removing the top soil, tilling or scarifying and pulverising the existing subgrade materials and then adding cement at dosages between 8 and 16 percent of the dry weight of the material to stabilize the *in-situ* material. The design of cement stabilized soil for roads is addressed in a separate project memo. The cement-soil mixture should be compacted using a pad foot roller until the specified strength, stiffness and uniformity is achieved. After this, the cement stabilized fill may need to be rolled using a smooth steel drum roller to achieve a smooth surface prior to placing the surface coarse material. Place the Granular A fill in one lift and compact to 98% SPMDD. The contractor should ensure proportionate mixing of cement in the soil. Mixing plastic clays with a dosage of lower than 5% cement by weight can make the roads frost susceptible by increasing the silt content of the mixture. Although, frost heave is not a major concern for aggregate surfaced roads as compared to paved roads, it may result in loss of gravel and potholes, requiring the contractor to perform additional maintenance and repairs.

Quality control for the cement stabilized soil should consist of the following:

- Conduct one standard proctor tests every 100 m of road;
- Measure the moisture content of the native soil to be stabilized at 10 to 25 m intervals. Adjust the cement dosage based on averaging the moisture of 10 consecutive readings;
- Adjust the frequency of moisture content measurements based on the variability of the material over the distances noted above.
- Contractors should expect variability and be prepared to adapt their methodology to suit the site conditions at the time of construction.

² Ontario Provincial Standards Specifications

As noted above, Table 5-1, summarizes the recommended pavement structures for the WTG access roads.

Layer	Material	Thickness (mm)					
		Option 1	Option 2	Option 3	Option 4		
Surface Course	Granular A	150	75	150	150		
Base Course	Granular B	400	500	200	_		
base Course	Cement Stabilized Soil	-	-	_	200		
Subgrade	Geotextile and Geogrid	_	-	270R/TBX2000	_		

Table 5-1: Recommended Road Structure

5.2 Geotechnical Parameters

5.2.1 Bedrock

Table 5-2 lists the recommended design rock mass properties for the Nation Rise project. Summarizing, the Geologic Strength Index, GSI, of the rock is estimated to be 40 (Marinos and Hoek, 2001) and the intact strength of the rock is conservatively estimated to be 50 MPa based on the results of UCS tests summarized in Section 4. The corresponding rock mass compressive strength is 5.5 MPa and rock mass modulus is 8 GPa. Also, as noted in Section 4, the shear wave velocity of the rock is 1900 m/s; which corresponds to a small strain dynamic modulus, G_{max} , of 10 GPa. The dynamic modulus, G_D , at a strain amplitude of 10⁻³ is assumed to be $0.5G_{max}$ (see Table 5-2). This should be used to assess the dynamic behaviour of the WTGs in Domain 1 subject to wind loading.

Table 5-2: Rock Mass Properties

Rock Property	Symbol	Parameters	Unit
Intact Rock Strength	σ_{ci}	50	MPa
Hoek-Brown Constant	m_i	12	—
Geological Strength Index	GSI	40	-
Rock Mass Compressive Strength ¹	σ_{cm}	5.5	MPa
Deformation Modulus ²	E_m	8	GPa
Shear wave Velocity	V_s	1900	m/s
Small strain dynamic modulus	G _{max}	10	GPa
Large strain dynamic modulus	G_D	5	GPa
Unfactored rock-concrete Bond Strength	f_s	1	MPa

Notes: ${}^{1}\sigma_{cm} = (0.0034m_{i}^{0.8})\sigma_{c}[1.029 + 0.025e^{(-0.1m_{i}]}]^{GSI}$ (Eberhardt, 2003); ${}^{2}E_{m} = \sqrt{\frac{\sigma_{ci}}{100}} 10^{(\frac{GSI-10}{40})}$ (Marinos and Hoek, 2001).

5.2.2 Glacial Till

The glacial till encountered at the Nation Rise site varies from Silt Till to Gravelly Sand Till. At locations where the till is fine-grained (i.e. Silt Till), undrained analysis is recommended to assess the bearing capacity of the WTG foundations subject to short term loading. Effective stress parameters and analysis can be used for the Gravelly Sand Till. Table 5-3 lists the recommended design parameters for the Silt Till and Gravelly Sand Till. The dynamic shear modulus, G_D , listed in this table is based on $0.25G_{max}$, which corresponds to non-plastic materials and a strain amplitude of 10^{-3} (see Vucetic and Dobry 1991). Furthermore, as discussed below in Section 5.3, the strength and stiffness of the glacial till deposits in Domain 2 are not susceptible to cyclic degradation or fatigue.

Depth (m)	ʻN' Value (Blows/	Undraiı	ned Para	ameters		Effective Stress Parameters		Dynamic Modulus (MPa)		k – (cm/s)	γ (kN/m³)
(,	30 cm)	Eu (MPa)	μ_u	S _u (kPa)	E' (MPa)	μ'	c′ (kPa), φ' (°)	G _{max}	G _D	(CIII/S)	
0-2	8	12.5	0.45	50	15	0.3	0, 34	60	13	9.6×105	19.0
2-4	12	24.5	0.45	75	24	0.3	0, 36	110	24	9.6×105	19.8
2-8	16	21.2	0.45	95	30	0.3	0, 36	240	50	9.6×105	20.1
8-12	20	37.5	0.45	120	40	0.3	0, 36	320	65	9.6×105	20.8

Table 5-3: Design Parameters for Silt Till (ML) and Gravelly Sand Till (SG)

Notes: E_u and μ_u are the undrained elastic modulus and Poisson's ratio; E' and μ' are the drained elastic modulus and Poisson's ratio; c', ϕ' are the effective cohesion and effective friction angle; S_u is the undrained shear strength.

5.2.3 Silty Clay (CI)

Table 5-4 lists design parameters for the Silty Clay (CH) deposit in Domain 3. Two values are given for the undrained strength profile at the WTG locations in this domain; First, the upper 20% of the deposit consists of a firm to stiff crust. Additionally, there is a soft to firm zone at a depth between 45% and 60% of the deposit thickness, *D*. The undrained strength can be assumed to vary linearly between the crust and soft to firm zone; the strength increases at a rate of 3 kPa/m below 0.6D.

Borehole	Clay Thickness	Crust (0 – 0.2H)		Soft Zone (0.45- 0.6H)		Dynamic Shear Modulus		s_u/p_c'	Compression Indexes	
	(m)	s _{uo} (kPa)	<i>Е_{uo}</i> (MPa)	s _u (kPa)	<i>Е_u</i> (MPa)	G _{max} (MPa)	<i>G_D</i> (MPa)		C _R	Cc
WTG-01	5.5	55	13.8	35	8.8	18.5	4.0	0.25	0.1	0.7

Table 5-4: Design Parameters for Silty Clay (CI)

TULLOCH Engineering

	Clay Thickness) – 0.2H)	Soft Zone (0.45- 0.6H)		Dynamic Shear Modulus		s_u/p_c'	Compression Indexes	
	(m)	s _{uo} (kPa)	<i>Е_{ио}</i> (MPa)	s _u (kPa)	<i>Е_u</i> (MPa)	G _{max} (MPa)	<i>G_D</i> (MPa)		C _R	Cc
WTG-09	6.5	40	10.0	20	5.0	13.5	3.0	0.25	0.1	0.7
WTG-18	7.6	40	10.0	20	5.0	13.5	3.0	0.25	0.15	1.0
WTG-20	6.1	50	12.5	20	5.0	18.5	4.0	0.25	0.15	1.0
WTG-21	12.2	50	12.5	20	5.0	18.5	4.0	0.25	0.15	1.0
WTG-23	10.0	40	10.0	20	5.0	13.5	3.0	0.25	0.15	1.0
WTG-35	11.5	-	-	-	-	-	-	0.25	0.1	0.7
WTG-38	7.2	40	10.0	30	7.5	15.0	3.3	0.25	0.1	0.7
WTG-44	6.2	55	13.8	35	8.8	18.5	4.7	0.25	0.1	0.7
WTG-47	9.1	55	13.8	20	5.0	18.5	4.0	0.25	0.1	0.7
WTG-54	7.6	40	10.0	20	5.0	18.5	4.0	0.25	0.1	0.7

5.2.4 Soil Unit Properties

Table 5-5 lists the unit weight, specific gravity and effective strength parameters for the three main soil types encountered at the site. It is noted that it will take significant lateral movement to mobilize the passive resistance of the Silty Clay deposit at the site. Accordingly, TULLOCH has reduced the passive earth pressure coefficient by 50% to account for this. The effective strength parameters are based on the geotechnical engineer's prior knowledge and experience in the Ottawa Region.

Table 5-5: Silty Clay unit properties

Material	Saturated Unit	Specific		e Strength meters	Active Earth Pressure	Passive Earth Pressure	Sliding Coefficient
	Weight (kN/m³)			Coefficient	Coefficient	(Soil- Concrete)	
Silty Clay (CL)	17.5	2.7	5	28	0.36	1.4	0.25
Silt Till (ML)	20.5	2.7	0	34	0.28	3.5	0.35
Gravelly Sand Till (SG)	21	2.7	0	36	0.26	3.9	0.35

5.3 WTG Foundations

5.3.1 Foundations on Bedrock (Domain 1)

WTG foundations in Domain 1 can consist of cast-in-place reinforced concrete gravity base foundations constructed either directly on the rock or on a layer of granular fill on the rock. Based on the bedrock depths, WTG-02, -04, -06, -25, -27 and -48 can be placed directly

on or embedded slightly into the shaly limestone bedrock; WTG-12, -32, -41, and -56 can be founded on a thin layer of compacted crusher-run Granular A (OPSS 1010) fill placed directly on the bedrock. The maximum thickness of the Granular A – Type II fill will be approximately 2.0 m.

Table 5-6 summarizes the recommended design bearing values for the WTG foundations in Domain 1. WTGs within this domain will be situated below the long-term groundwater level and as such they should be designed for buoyancy forces.

Bearing Material	Factored ULS Bearing Resistance (kPa)	SLS Bearing Resistance (kPa)	Dynamic Shear Modulus, <i>G_D</i> (MPa)
Bedrock ¹	10,000	Does not Govern	5,000
Granular A	500	400	50

Table 5-6: Bearing Capacity for Foundations on Bedrock

Note: ¹Top of prepared intact bedrock surface

Rock Anchors

It is considered feasible to incorporate rock anchors into the WTG foundations in Domain 1; however, this is appropriate only where the foundations are cast directly on the bedrock and not on granular fill on rock. A factored ULS grout-to-bedrock bond strength of 625 kPa can be used for design to estimate the bonded length for the rock anchors assuming a grout strength, f'_c , of 30 MPa. Designers should also ensure adequate strength at the anchor-grout interface. A wedge type failure mechanism is unlikely to develop in the rock mass at this site based on the RQDs and the mainly horizontal jointing.

The preceding guidance for rock anchor design should be confirmed by conducting pullout tests to failure during construction on a representative number of anchors (typically 10% of the anchors). The bonded length can be increased or decreased depending on the results of pullout tests. All anchors should be proof load tested up to 1.1 times the design load.

Foundation Preparation

Given the laminated and bedded nature of the sedimentary bedrock, it should be feasible to excavate the bedrock using bucket and hoe ram equipped hydraulic excavators without requiring drill and blast methods. Prior to placing concrete on the bedrock, weathered, fragmented or loose rock must be removed to expose fresh rock with a rock mass quality of fair to good. After excavating to the design foundation level, the exposed bedrock should be thoroughly cleaned, and pressure washed to ensure the rock surface is free of dirt, debris, standing water, snow or other deleterious materials, and a lean concrete mud mat should be placed on the rock to protect it during foundation construction. Where such removals result in local over excavation, the over excavated zone should be backfilled with lean concrete (15 MPa).

Based on the bedrock elevations reported on the borehole logs, the maximum bedrock slope between the WTG sites is 1.2%. As a result, the rock surface within each WTG site is expected to be essentially flat. Based on experience, however, bedrock levels can change locally where limestone beds have been broken off by glacial action. At these locations, ledges or steps can occur in the bedrock surface of up to 1.5 m in height. If encountered, the rock should be excavated under the entire footing of the WTG to achieve a flat bearing surface. Granular A fill should not be used to even out these step changes in the rock surface.

In some cases, foundations may be constructed on Granular A fill paced directly on the prepared bedrock. Where required, the Granular A fill should be placed in 300 mm thick lifts and compacted to 100% of the Modified Proctor Dry Density (ASTM D1557) to achieve a dense bearing material of uniform thickness. The bearing capacity of the fill layer will be high due to the confinement, i.e. the thickness of this layer should be less than 10% of the foundation diameter.

Lastly, foundation excavations in Domain 1 will likely extend below the groundwater table into fractured permeable bedrock. Since the WTGs in this Domain are located at high points of the local relief (i.e. at higher elevations), the groundwater recharge in the bedrock will be limited. As a result, contractors should be able to use conventional sump and pump techniques to dewater excavations. Furthermore, the quantity of water to be handled should diminish with time or eventually stop completely. The impact of excavations and dewatering on the regional groundwater regime is expected to be insignificant. The application of a lean concrete mud mat on the rock will also ensure that the construction does not introduce sediment to the groundwater adversely impacting the water quality.

Gapping

It is understood that the project may design the WTG foundation in Domain 1 for gapping in order to optimize the foundations. A gapping design is feasible in Domain 1 for WTGs founded directly on bedrock as well as foundations founded on Granular A fill on the bedrock. If a gapping design is adopted, the Granular A thickness should not exceed 2.0 m. Additionally, the Granular A fill should extend at least 2 m beyond the outer edge of the foundations to avoid loosening at the edges.

Based on the bedrock core samples, the bedrock at the Nation Rise site comprises fresh to faintly weathered, strong to very strong limestone; also, the bedrock jointing is tight and free of joint infilling. As such, the bedrock at the Nation Rise site is not considered to be susceptible to fatigue if gapping is adopted in the foundation design. Also, Granular A is not susceptible to fatigue. Thus, the strength and dynamic modulus properties, listed in Table 5-6, are suitable for both conventional and gapping foundation designs including the effects of cyclic degradation or fatigue.

5.3.2 Foundations on Till (Domain 2)

In Domain 2, shallow gravity base foundations are recommended for the WTGs. In this domain, the bearing soil will comprise either Silt Till or Gravelly Sand Till. The following limit state bearing capacities are recommended for design of WTG foundations in Domain 2. The factored ULS has been estimated using conventional bearing capacity equations and a resistance factor of 0.5: The SLS bearing resistance is the maximum bearing pressure at the heel of the foundation corresponding to a differential settlement of 1/300.

Bearing Material	WTGs	Factored ULS Bearing Resistance (kPa)	SLS Bearing Resistance (kPa)
Dense to Very Dense Silt Till (ML)	-05, -07, -10, -16, -43, - 46, -52	300	200
Compact Silt Till (ML)	-11, -28, -29, -58	250	200

Table 5-7: Bearing Capacity for Foundations in Domain 2

As noted below in Section 5.5, the frost penetration depth at the site is estimated to be 1.8 mbgs. Accordingly, all foundations on glacial till must be embedded at least 1.8 m into the ground to ensure adequate soil cover to avoid frost heave. However, at some locations, the depth to the bearing layer will exceed 1.8 m due to the presence of soft layers in the foundation including but may not be limited to WTG , -11, -29, -58. These soft layers must be removed as part of the foundation base preparation. In areas requiring the removal of soft materials below 1.8 m depth, the excavations can be backfilled using Granular A compacted to 100% SPMDD. The contractor is required to follow OPSS 501 for compaction of earth and granular material. Table 5-8 summarizes the bearing material and the estimated depth for each of the WTGs in Domain 2. The depths in this table are approximate based on the borehole data at each WTG location. These depths and the

corresponding bearing materials must be verified during construction by the Geotechnical Engineer of Record (EOR).

Foundation Preparation and Testing

Foundation preparation in Domain 2 should consist of excavating the overburden soil to between 150 mm and 200 mm below the required foundation bearing level. All soft, loose, compressible and otherwise unsuitable material such as peat and organic soil should be removed to expose undisturbed dense Silt Till or Gravelly Sand Till. After preparing the foundation soil, a 200 mm thick lean concrete mud mat should be placed on the prepared till to allow construction of the foundation and to protect the till subgrade from disturbance. Prior to placing the mud mat, the foundation bearing surface should be divided into quadrants and three (3) to four (4) Dynamic Cone Penetration Tests (DCPTs) should be conducted per quadrant to confirm the density of the bearing material. Tentatively, an equivalent SPT 'N' Value of 12 blows/30 cm, averaged over a depth of 1 m, can be used as an acceptance criterion for the foundation bearing material. The preceding acceptance criterion, however, is approximate, and it should be reviewed during construction by the Geotechnical EOR, who may adjust the criterion based on the observed condition of the Till soils after excavation and the response of the soil to DCPTs. Other tests such as plate load tests may be required to establish a suitable DCPT criterion.

Lastly, due to the fine-grained nature of the Nation Rise Silt Till materials and based on the borehole falling head tests, dewatering is expected to require only sump and pump techniques. Locally, however, water bearing sand layers may be encountered during the construction. These layers will have limited recharge and are expected to yield water only temporarily until pumped dry. If encountered, contractors may need to excavate pits into these layers and pump the groundwater from the pits until the granular layers dry up prior to executing the bulk excavation.

Gapping

It is understood that the project would like to design the WTG foundations in Domain 2 for gapping. Considering this, TULLOCH has assessed the borehole data at the Domain 2 WTG locations and concluded that only WTGs -05, -07, -10, -16, -43, -46, -52, and 57 can be considered for gapping designs. These WTGs will be founded mainly on either dense Silt Till or dense coarse-grained Granular Tills. The stiffness and strength of these materials

is not normally susceptible to cyclic degradation. To confirm this, TULLOCH has reviewed the cyclic stress cycles that are likely to be imposed on the Till deposits at the above referenced WTG locations. Additionally, we have reviewed historical cyclic triaxial tests on comparable Southern Ontario tills. This review has confirmed that the Silt and Granular Till soils at WTGs -05, -07, -10, -16, -43, -46, -52, and 57 can tolerate the estimated amplitude and number of stress cycles associated with gapping without experiencing significant cyclic degradation or fatigue. Accordingly, the strength and dynamic properties listed in Table 5-3 can be used for gaping designs without needing to be reduced to account for cyclic degradation.

WTG No.	Bearing Material	Min. Depth (m)	Notes	
WTG-05	Silt till (ML)	2.3	Remove firm clay from -1.8 to -2.3 m depth; Replace with Granular A	
WTG-07	Silt Till (ML)	1.8	Found below the frost penetration depth.	
WTG-10	Gravelly Silt Till (ML)	1.8	Found below the frost penetration depth	
WTG-11	Silt Till (ML)	1.8	Found below the frost penetration depth	
WTG-16	Silt Till (ML)	1.8	Found below the frost penetration depth	
WTG-28	Silt Till (ML)	3.0	Excavate to 3m depth to remove loose SILT Till, replace with Granular A to 1.8 m	
WTG-29	Silt Till (ML)	4.0	Excavate to 4m depth to remove loose SILT Till, replace with Granular A to 1.8 m	
WTG-35	Silt Till (ML)	3.05	Remove Silty Clay from 1.8 – 3.05 m depth; Replace with Granular A	
WTG-43	Gravelly Sand Till (SG)	1.8	Found below the frost penetration depth; May require advanced dewatering	
WTG-46	Gravelly Silt Till (ML)	1.8	Found below the frost penetration depth; May require advanced dewatering	
WTG-52	Sandy Silt Till (ML)	1.8	Found below the frost penetration depth; May require advanced dewatering	
WTG-57	Sandy Silt Till (SW)	1.8	Found below the frost penetration depth; May require advanced dewatering	
WTG-58	Silt Till (ML)	2.3	Remove the Silty Clay from 0-2.3 m; Replace with Granular A	

Table 5-8: Estimated Foundation Depth for WTGs in Domain 2

5.3.3 Deep Foundations (Domain 3)

Deep foundations will be required for the WTGs located in the very soft to firm Silty Clay. It is also understood that the Project will not use driven piles or any H-piles, and therefore will not drive any piles onto or into the bedrock. It is not recommended to use rammed aggregate piers for ground improvement as the granular pier has the potential to serve as

a conduit for surface water to penetrate the subsurface, which can have negative impacts on aquifers at depth. Accordingly, the following sections cover drilled foundation alternatives for the Nation Rise WTGs.

5.3.3.1 Bored (Drilled) Shaft Piles

Bored shaft piles between 450 to 750 mm diameter can be used for the WTG foundations in Domain 3. This type of pile involves advancing a casing through the overburden using a vibro-hammer and then slightly into bedrock using an oscillator. A bucket auger can be used to excavate the soil from inside the casing. Reinforcement is then placed into the drill hole and the pile is filled with concrete. The bored shaft piles should be embedded between one diameter (1D) and one and a half diameters (1.5D) into the bedrock, which will require rock coring.

Bored shafts constructed in this manner can be designed as end-bearing piles. Table 5-9 lists the recommended geotechnical design capacities for 450 mm, 600 mm and 750 mm diameter bored shafts. The SLS pile capacity will be governed by the pile elastic displacement only. Due to the weak overburden soils, the skin friction or adhesion will be insignificant. As a result, the foundation designer should select an appropriate displacement criterion for the foundations and estimate the SLS capacity using the elastic deformation PL/AE of the pile assuming the bedrock is rigid.

Shaft Diameter (mm)	Embedment Depth in Rock (mm)	Factored ULS (kN)	
	1X Pile Diameter	Compression	Tension ¹
450	450	2,100	160
600	600	3,700	300
750	750	5,800	475

Table 5-9: Design Geotechnical Capacity of Bored Shafts

Note: ¹ Excludes the weight of the pile.

The preceding pile capacities have been calculated using the rock mass properties listed in Table 5-3. The factored ultimate concrete-to-rock bond (290 kPa) and factored ultimate end-bearing pressure (12 MPa) are based on the methodology outlined in FHWA publication FHWA-NHI-10-016 (2009). The bedrock at the tip of the pile must be inspected with a down-hole camera. Contractors may need to use air-lifting techniques to clean the bedrock. However, after coring the bedrock, if a casing is socketed into the rock, then any debris at the pile tip should comprise pieces of medium strong to strong limestone rock.

These pieces, if left in place, should not adversely affect the end-bearing capacity of the drilled shaft.

5.3.4 Micropiles

Micropiles are feasible for WTG foundations situated within the soft Silty Clay geology. This pile alternative consists of either 273 mm, 355 mm or 406 mm OD HSS pipe drilled through the overburden and embedded nominally into the bedrock. The HSS pipe should be advanced through the overburden soils and ½ pile diameter into the bedrock using a casing advancing system. After embedment in the rock, a downhole hammer should be used to drill an additional two-pile diameters (2D) into the rock to create a socket. Figure 5-1 illustrate a typical micropile installed in this way. After completing the drilling, a steel bar should be inserted into the pile extending to the tip of the socket; and the socket and HSS filled with structural grout to complete the installation. It is assumed that the socket will be pressure grouted to enable the use of end-bearing and socket bond in the design.

Table 5-10 lists the recommended geotechnical design capacities for micropiles constructed according to the preceding description. Due to the drilling method, skin friction will be negligible in the overburden. Accordingly, the SLS capacity of the micropiles will be governed by the elastic compression of the pile only (i.e. PL/AE). The designer can assume the bedrock is rigid for this calculation.

Pile	Embedment into	Factored	ULS (kN)
	Rock (mm)	Compression ¹	Tension ²
HSS 273 mm	546	1,150	140
HSS 355 mm	710	1,950	240
HSS 406 mm	812	2,560	310

 Table 5-10: Recommended Geotechnical Capacities for Micropiles

Note: ¹Based on an ultimate grout-to-bond strength of 1,450 kPa; ²Based on a pullout cone forming in the rock; ^{1,2}Resistance factors of 0.4 and 0.3 have been used in compression and tension.

5.3.5 Continuous Flight Auger (CFA) Piles

Lastly, CFA piles are also feasible in Domain 3 at the Nation Rise site. CFA piles are bored cast-in-place reinforced concrete piles installed using continuous flight augers to drill through the overburden soils to the bedrock; concrete is injected into the augered hole through the augers as they are retracted, and a rebar cage is subsequently installed after that. Table 5-11 summarizes the recommended geotechnical capacities for CFA piles.

The factored ULS pile capacities values listed in Table 5-11 are based on end-bearing on the bedrock and assume 75% of the tip is in contact with the bedrock. Due to the method of construction and rock hardness, it will not be feasible to socket these piles into the rock. The tensile capacity neglects the pile weight and is based on an 8 m long pile, i.e. 6m in Silty Clay and 2 m in Silt Till, and shaft adhesion values of 35 kPa in the Silty Clay and 80 kPa in the Silt Till.

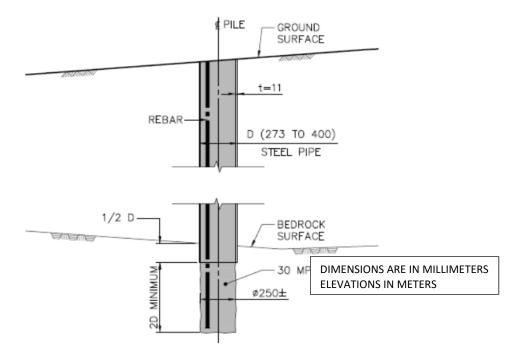


Figure 5-1: Typical Micropile and End-treatment

Table 5-11: Recommended Geotechnical Capacity of CFA Piles

Shaft Diameter (mm)	Factored ULS (kN)	
	Compression	Tension ¹
500	1,940	175
600	2,800	210
750	4,375	260
900	6,300	310

Note: ¹The tensile capacity is based on the □-method; it neglects the pile weight.

5.4 Lateral Capacity of Piles

The lateral capacity of micropiles, CFA piles and bored shaft piles will be strongly influenced by the lateral stiffness of the Silty Clay deposit, which is low. Ideally, piles should be battered to provide lateral resistance. Although a batter of (4V:1H) is feasible, TULLOCH recommends a maximum batter of (6V:1H) for ease of construction. The designer should contact TULLOCH for guidance on the selection of lateral non-linear spring constants for designing laterally loaded vertical piles.

5.5 Pile Group Impacts

All pile types will end-bear on or nominally into the bedrock and as such pile group effects should be insignificant. However, the pile spacing should be at least three pile diameters apart to minimize group interaction for the lateral stiffness of the foundation. The designer should contact TULLOCH for guidance if closely spaced piles are required.

5.6 Foundation Buoyancy

Based on the measured depth to the groundwater table, buoyant effects should be accounted for during the WTG foundation designs. For the WTGs in the Silty Clay domain, there will be a tendency for groundwater to collect in the backfill around the foundation due to the low permeability of the native soils (i.e., a bathtub effect). For design in this domain, the groundwater table should be assumed to be at the ground surface. The following table summarizes the recommended water table assumptions for the design of foundations in Domains 1 and 2.

WTG No.	Domain	Water Table Depth (mbgs)
2	1	0.2
4	1	1.1
6	1	0.7
12	1	0
25	1	0.8
27	1	0
32	1	0
41	1	0
48	1	0
56	1	0
5	2	0
7	2	0.2

Table 5-12: Design water table depths in Domain 1 and 2

WTG No.	Domain	Water Table Depth (mbgs)
10	2	0.3
11	2	0
16	2	0
28	2	1.6
29	2	3.1
43	2	0
46	2	0
52	2	1.4
57	2	0.5
58	2	0

5.7 Other Piling Considerations

There is evidence of artesian conditions in the bedrock near the South Nation River observed during drilling. As a result, contractors will need to be prepared to handle flowing water from the rock during CFA, Micropile and Bored Shaft construction in Domain 3. All bored pile methods should be executed in a manner that maintains enough length of casing stickup above the ground level to counterbalance the artesian head. Although maintaining adequate stickup and the use of drilling slurry (with subsequent tremie placement of concrete) should be sufficient to control the ground water inflow, a groundwater pressure relief system or dewatering wells near the work area can also be considered as an alternative to drawdown the water table and enable construction. Concrete placement methods (wet vs. dry placement) will need to be decided depending on water conditions encountered during drilling of the piles.

5.8 Backfill

It will be important to pay appropriate attention to the backfill material placed around foundations constructed in the fine-grained deposits at the site. Without proper attention to this detail, infiltration could collect in the backfill (i.e., a bathtub effect) causing full buoyancy on the foundations. Accordingly, backfill around the turbines should consist of the native soil derived from the foundation excavation. If sandy materials are encountered within an otherwise fine-grained deposit, discard the sandy material and use the silt or clayey materials for backfill. Compact the backfill material to 95% SPMDD. If the material is excessively wet, dry the material to achieve a moisture content close to the optimum moisture content for compaction. The foundation designer should ensure that the finished ground around the WTG foundations is sloped generously away from the foundation to

prevent water from collecting on, and seeping into the backfill material. The permeability of the backfill should be equal to or less than that of the surrounding native soils.

5.9 Open Cut Excavations

Excavation safety and the stability of temporary construction slopes and lateral support systems are the Contractor's responsibility. Where workers must enter excavations deeper than 1.2 m, the trench excavations must be suitably sloped and/or braced in accordance with the Occupational Health and Safety Act (OHSA), Ontario Regulation 213/9, Construction Projects, January 1, 2010, Part III - Excavations, Section 226. Alternatively, the excavation walls should be supported by engineered shoring system, bracing, or trench boxes complying with Sections 235 to 239 and 241 under 0. Reg. 231/91, s. 234(1).

Based on the OHSA, the *in situ* soils may be classified as Type 3 soils above the groundwater table. The Silty Clay can be classified as Type 3 below the water table as well; Granular Till materials should be classified as Type 4 soils below the groundwater table. Temporary excavation side slopes in Type 3 soils should remain stable at a slope of 1H:1V. Temporary excavation side slopes in Type 4 soils should remain stable at a slope of 3H:1V. The *in situ* soils can be excavated using conventional hydraulic excavators.

Based on the borehole investigations, ground water can be expected at a depth of between 0.65 m and 2.7 m below the existing ground surface at the time of drilling; Artesian groundwater may also be encountered at some of the WTG sites near the South Nation River. Excavations above the groundwater table within the native soils should be relatively straight forward and should remain stable at a slope of 1H:1V. However, excavations below the groundwater table will become more difficult particularly when executed in non-cohesive granular soils. For excavations below the groundwater table, the following comments are provided:

- Prior to commencing excavations, all surface water sources must be controlled and diverted away from the proposed excavation to prevent infiltration and subgrade softening. At no time should excavations be left open and exposed to precipitation allowing the subgrade to soften or the side slopes to slump. Temporary berms around the excavation perimeter may be utilized to prevent surface runoff from getting into the excavation.
- Generally, groundwater inflow within the Silty Clay and Silt Till can be controlled to a significant depth below the water table by installing strategically placed filtered sumps and pumping the collected water out of the excavations.

There may be excavations into the Gravely Sand Till such as at WTG-07, which has a 2 m thick layer of gravel at a depth of 3 m. Also, WTG-10 has a 1 m thick layer of gravel at 1.5 m depth. WTG-28 has surficial sand and gravel layers extending to a depth of about 2.3 m that may also collect perched groundwater depending on prevailing weather conditions. Deeper excavations in this type of material may require advanced dewatering techniques, such as using well points to control the groundwater. As discussed above, it may be feasible to dewater sites in these soils by excavating a few test pits and pumping water from the pits prior to commencing bulk excavations.

All collected water should be discharged a sufficient distance away from the excavation to prevent re-entry. Sediment control measures, such as a filter bag and silt fence should be installed at the discharge point of the dewatering system. A maximum of 400,000 L/day may be discharged per the Renewable Energy Approvals (REA) agreement. Water taking in excess of 400,000 L/day completed during construction is subject to the REA and does not require a separate Permit To Take Water (PTTW), however, a similar assessment to a PTTW would be required as provided in the REA application's Construction Plan Report: Hydrogeological Assessment and Effects Assessment. Utmost care should be taken to avoid any potential adverse impacts on the environment.

Seasonal variations in the groundwater table should be expected, with higher levels occurring during the wet weather conditions in the spring and fall and lower levels occurring during the summer dry weather conditions.

Given the sensitive nature of the glaciomarine clay at the site, TULLOCH recommends detailed engineering assessment of all excavations in this material below 3 m depth to ensure the risk of failure, including potential retrogression of failure surface, is suitably mitigated. The contractor is required to provide their engineering assessments and work plans to TULLOCH for review and approval prior to construction.

5.10 Frost Protection

The estimated frost depth at the site is 1.8 m. The soil type is moderately susceptible to frost action. As such, the footings should be situated at a minimum depth of 1.8 mbgs to provide adequate insulation against frost heave. Alternatively, insulation can be used to raise the frost line and allow footings to be placed at a shallower depth provided suitable founding conditions are present at such depths. If shallower embedment is needed, thermal insulation should be placed at the outer surface of the foundation wall extending away

horizontally from the foundation to prevent frost penetration under the footing. Insulation details can be provided later, if this option is selected. All roads must be constructed using non-frost susceptible engineered fill to prevent freeze thaw damage.

5.11 Site Classification for Seismic Response

The parameters for determination of Site Classification for Seismic Site Response are set out the 2015 NBCC³. The site classification is based on the average shear wave velocity in the top 30 meters of the site stratigraphy. If the average shear wave velocity is not known, the site class can be estimated from energy corrected Standard Penetration Resistance (N_{60}) and/or the average undrained shear strength of the soil in the top 30 meters. The following site classes apply for this project based on the 2015 NBCC:

- Domain 1: Site Class A
- Domain 2: Site Class D
- Domain 3: Site Class E.

These seismic design parameters should be reviewed in detail by the structural engineer and incorporated into the design as required by 2015 NBCC.

5.12 Soil Corrosivity

Soil resistivity testing at the project site is included in Appendix F of the report entitled, "Overhead Underground Collection Transmission Report" dated February 15, 2019. Summarizing, the measured soil resistivities are:

- 0-8m: 1 to 1,200 Ω. m;
- >8m: 8 to 3,490 Ω.m ;

Based on the soil resistivity values, the corrosion rating for the native soils at the project site is considered as a mildly to highly corrosive environment. Historical tests by SENES Consultants (2015) indicate that the site soils have the potential to act as a severe corrosive environment to embedded steel foundation systems.

³ National Building Code of Canada

The structural design of foundations should account for these results. Despite the apparent corrosion potential, piles installed in the Silty Clay and Silt Till soils is unlikely to experience significant corrosion due to lack of oxygen below the water table.

5.13 Laydown Yard

The geotechnical data collected for the Laydown Areas at the Nation Rise site is summarized on borehole logs BH LD-1 and LD-2 in Appendix C and in the following table.

Overburden Soil				
Borehole	Туре	'N' Values	Layer Bottom Depth	Consistency
	Sand (SM)	8	0.61	Loose
BH-LD-01	Silty Clay (CL)	19	1.22	Very Stiff
	Silt (ML)	13-50	2.44	Compact to Very Dense
BH-LD-02	Sand Till (SW)	12 - 78	3.20	Compact to Very Dense

Table 5-13: Summary of Soil Parameters

Referring to Table 5-13, the subsurface conditions at Borehole BH-LD-01 consisted of 0.61 meters of compact fine-grained sand, with some silt at the surface transitioning to very stiff Silty Clay material to a depth of 1.22 mbgs and dense to very dense Silt Till from 1.22 mbgs to 2.44 mbgs with the presence of some clay, cobbles, boulders and gravel throughout. Borehole BH-LD-02 contained a topsoil layer at the surface that was 0.13 m in thickness overlying a dense to very dense Sandy Silt Till to refusal at 3.20 mbgs. In general, the subsurface conditions at the Laydown yard are favourable and the site is favorable for use as such.

5.14 Landslide Hazard, Associated Review and Monitoring

An extensive deposit of Silty Clay (Leda Clay) was encountered throughout the central portion of the Nation Rise Wind Project site. The geotechnical data presented in this report indicates that the Leda Clay is moderately sensitive at the WTG locations and the sensitivity increases with increasing proximity to the South Nation River. Leda Clays are known to be susceptible to retrogressive landslides. This section discusses the landslide hazard imposed by the Nation Rise Project.

The main landslide hazard within the project site is associated with the South Nation River and its riverbanks. However, this is a pre-existing hazard. Focusing on the Nation Rise Project, the site terrain is flat to gently sloping and the terrain is judged to be generally stable. The Project development will require the construction of roads, installation of buried power cables, pile construction, excavations for shallow foundations, and crane lifts during turbine erection. The incremental risk posed by these activities is judged to be insignificant as discussed below.

First, excavations for the WTG foundations at the Nation Rise site will not exceed about 4.5 m depth in the Leda Clay. Most excavations will be 1.8 m deep. Based on the turbine layout, all excavations in Leda Clay will be undertaken within flat terrain and at least 750 m from the South Nation River. At the planned depths, the factor of safety against base heave and slope failure is estimated to exceed 3.0. Considering the high factor of safety, generally flat terrain and the significant distance to the Nation Rise River, the risk of triggering a landslide is judged to be negligible. However, it is essential that proper excavation geometry and support procedures are followed to ensure safe operations, as discussed in Section 5.9.

Bored pile foundations will be constructed for the WTGs situated on Leda Clay. This will involve drilling through the Leda Clay to the bedrock using a steel casing to support the Leda Clay. Contractors will then core into the bedrock, insert reinforcing steel (i.e. a rebar cage) into the cased hole and then fill the hole with concrete before retracting the casing. During these operations, the Leda Clay will always be supported; and hence, the risk of inducing a landslide is judged to be negligible.

Road construction will involve placing a maximum of 450 mm thickness of granular fill materials on the Leda Clay deposit. This thickness is similar to the existing roads at the site and the pressure applied to the Leda Clay (12.5 kPa) is well below the ultimate bearing capacity of the clay (150-200 kPa). Accordingly, road construction will not have a material impact on terrain stability as demonstrated by the existing roads.

Construction of the Project collector system (i.e. power cables) will require the excavation of shallow trenches in each of the three domains encountered at the site. In the Leda Clay domain, the expected depth of the trenching is insufficient to cause a mass landslide. The primary risk imposed by the collector system is where it crosses the South Nation River near WTGs-23 and -25. At this location, the cables are planned to be installed under the South Nation River using Horizontal Direction Drilling (HDD). To mitigate the risk of failing the riverbanks, the HDD boring will be situated in the bedrock at least 3 m below the top of rock. Additionally, the launch and receiving pits shall be limited to a maximum depth of 3m and situated at least 30 m from the river. These measures are considered appropriate and

the risk of inducing a landslide is judged to be very low. The HDD final design details and the contractor's launch and receiving pits and installation plan should be reviewed by the Geotechnical EOR prior to implementing the crossing. Additionally, a detailed monitoring plan is recommended for the construction. The monitoring plan should include piezometers, inclinometers and settlement monitoring points to ensure the impact of the HDD construction is insignificant.

Lastly, the project will require several crane lifts during the tower and WTG erection. All of the crane lifts will be undertaken using track mounted crawler cranes situated on crane pads engineered to impose safe bearing pressures on the Leda Clay. The Geotechnical EOR should review the crane pad details to ensure allowable bearing capacities of the foundation soils are not exceeded. We understand that all lifts will have a lift plan as required by Ontario Government regulations and the plans will be reviewed by a third-party independent engineer to ensure their adequacy. Lastly, all crane lifts on Leda Clay will have displacement monitoring during the lift to ensure satisfactory performance. With these provisions, as well as the flat site terrain, the risk of inducing a landslide is insignificant.

6 CLOSURE

TULLOCH has prepared this geotechnical report for the exclusive use of EDP Renewables and their authorized agents for the construction of the proposed Nation Rise Wind Farm.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with generally accepted practices in the field of geotechnical engineering, for the above noted location. Classification and identification of soils and geologic units have been based upon commonly accepted methods employed in professional geotechnical practice. Foundation design recommendations are based on standard accepted methods of analysis for these types of structures. No warranty or other conditions, expressed or implied, should be understood. Please refer to Appendix I, Report Limitations and Guidelines for Use, which pertains to this report.

We trust that the information and recommendations in this draft report will be found to be complete and adequate for your consideration. Should further elaboration be required for any portion of this project, we would be pleased to provide assistance.

42

REFERENCES

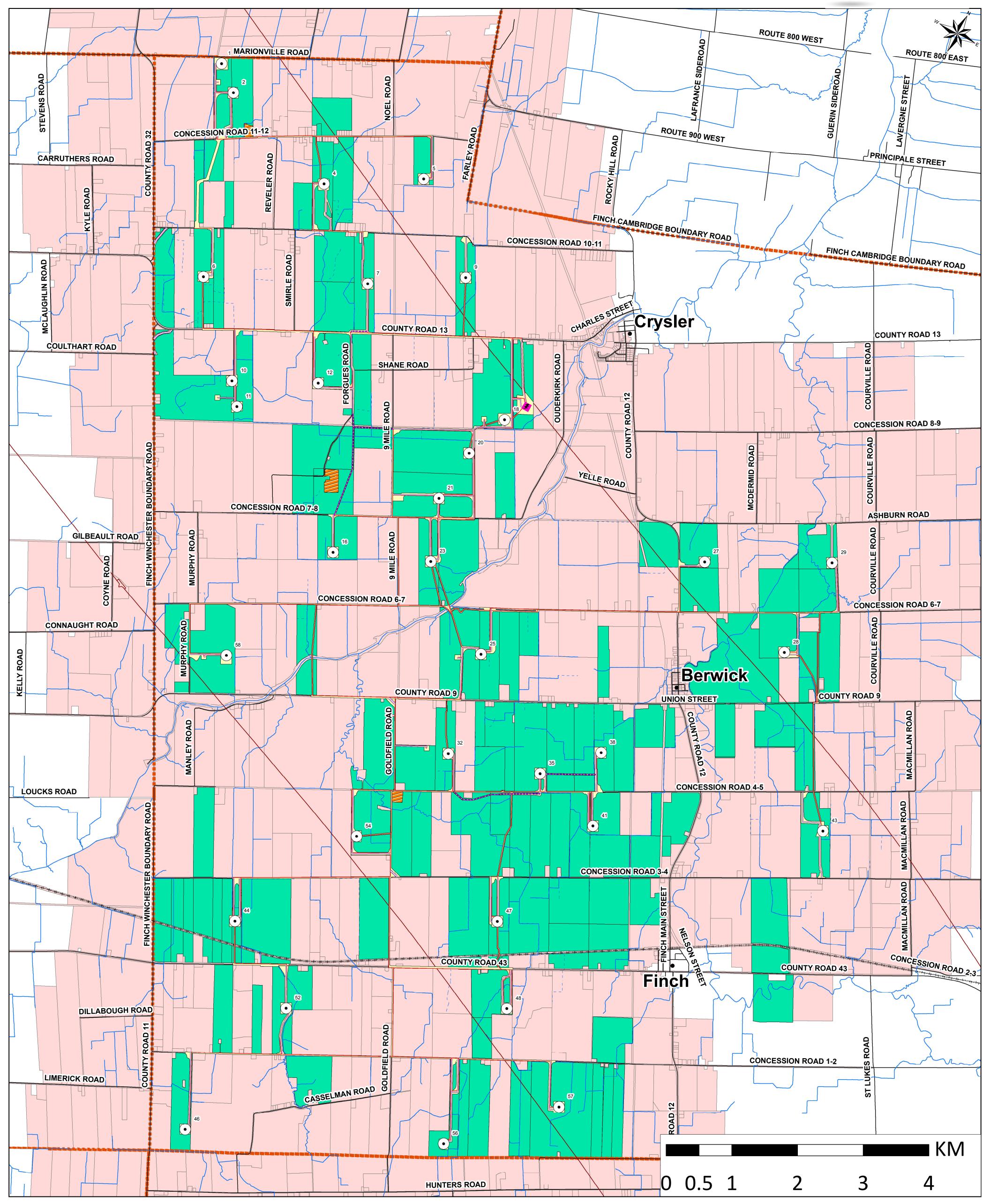
Marinos, P., and E. Hoek. (2001). Estimating the geotechnical properties of heterogeneous rock masses such as flysch, Bulletin of Engineering Geology and the Environment, 60(2), pp. 85-92.

National Building Code of Canada, NRC, 2015.

Ontario Geological Survey 2010. Surficial geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 128-REV

Ontario Geological Survey 2011. 1:250 000 scale bedrock geology of Ontario; Ontario Geological Survey, Miscellaneous Release---Data 126-Revision 1.

Occupational Health and Safety Act (OHSA), Ontario Regulation 213/9, Construction Projects, January 1, 2010, Part III - Excavations, Section 226.


SENES Consultants, 2015

APPENDIX A

SITE LOCATION PLAN

NATION RISE WIND PROJECT

Leased Parcels - 04/20/2018

Legend

• Towns

• 33 WTG Layout

Substation Location

- Turning Radii
- Access Road
- ----- Crane Path
- Collection Route Butternut Tree Avoidance

Date / Time: 20 April 2018 / 03:58 PM Version: Datum: North American 1983 Gatineau Projecton: INAD 1983 UTM Zone 18N Prp Rio Laydown Areas Scale: 1:26,969 **Sources:** EDPR, ESRI, Ventyx Ottawa Project Location Footprint 0 Substation Area Cornwall **Municipal Drains** Municipal and County Roads Leased Parcels Non-Leased Parcels Fort

Author: Nathan Roscoe

renewables

CONFIDENTIAL

APPENDIX B

ABBREVIATIONS, TERMINOLOGY, AND PRINCIPAL SYMBOLS USED

ABBREVIATIONS, TERMINOLOGY AND PRINCIPAL SYMBOLS **USED IN REPORT AND BOREHOLE LOGS**

BOREHOLES AND TEST PIT LOGS

W	Washed Sample

- AA Auger Sample SS Split Spoon
- HQ Rock Core (63.5 mm dia.)
- ST Thin-walled Tube Sample RS Block Sample
- NQ Rock Core (36.5 mm dia.)
- BQ Rock Core (36.5 mm dia.)

IN SITU SOIL TESTING

Standard Penetration Test (SPT) "N" value. The number of blows required to drive a 51 mm OD split barrel sampler into the soil a distance of 300 mm with a 63.5kg weight free falling a distance of 760mm after an initial penetration of 150mm has been achieved.

Dynamic Cone Penetration Test (DCPT) is the number of blows required to drive a cone with a 60 degree apex attached to "A" size drill rods continuously into the soil for each 300mm penetration with a 63.5 kg weight free falling a distance of 760mm.

Cone Penetration Test (CPT) is an electronic cone point with a 10 cm' base area with a 60 degree apex pushed through the soil at a penetration rate of 2cm/s.

Field Vane Test (FVT) consists of a vane blade, a set of rods and torque measuring apparatus used to determine the undrained shear strength of cohesive soils.

SOIL DESCRIPTIONS

The soil descriptions and classifications are based on an expanded Unified Soil Classification System (USCS). The USCS classifies soils on the basis of engineering properties. The system divides soils into three major categories; coarse grained and highly organrc soils. The soil is then subdivided based on either gradation or plasticity characteristics. The classification excludes particles larger than 75mm. To aid in quantifying materal amounts by eight within the respective grain size fractions the following terms have been included to expand the USCS:

Soil Classification		Terminology	Proportion
Clay	<0.002 mm	"trace"	1%to 10%
Silt	0.002 to 0.06 mm	"some"	10% to 20%
Sand	0.075 to 4.75 mm	Sandy, Gravelly, etc.	20% to 35%
Gravel	4.751o 75 mm	"and"	>35%
Cobbles	75 to 200 mm	Noun, SAND, SILT, etc.	>35%
Boulders	>200 mm		

Notes:

1. Soil properties, such as strength, gradation, plasticity, structure, etc. dictate the soils engineering behaviour over the grain size fractions:

2. With the exception of soil samples tested for grain size distribution or plasticity, all soil samples have been classified based on visual and tactile observations and is therefore an approximate description.

The following table outlines the qualitative terms used to describe the relative density condition of cohesionless soil:

Cohesionless Soils

Compactness	SPT "N" Value (blows/30cm)
Very Loose	0 to 4
Loose	5 to 10
Compact	11 to 30
Dense	31 to 50
Very Dense	>50

The following table outlines the qualitative terms used to describe the consistency of cohesive soils related to undrained shear strength and SPT, N-Index:

Cohesive Soils

Consistency	Undrained Shear Strength (kPa)	SPT "N" Value (blows/30 cm)
Very Soft	<12.5	< 2
Soft	12.5 to 25	2 to 4
Firm	25 to 50	5 to 8
Stiff	50 to 100	9 to 15
Very Stiff	100 to 200	16 to 30
Hard	> 200	>30

Note: Utilizing the SPT, "N" value to correlate the consistency and undrained shear strength of cohesive soils is very approximate and needs to be used with caution.

ROCK CORING

Rock Quality Designation (RQD) is an indirect measure of the number of fractures within a rock mass, Deere et al. (1967). It is the sum of sound pieces of rock core equal to or greater than 100 mm recovered from the core run, divided by the total length of the core run, expressed as a percentage. If the core section rs broken due to mechanical or handling, the pieces are fitted together and if 100 mm or greater included in the total sum.

Intact Strength (Mpa)	Description
< 1	Extremely low strength
1-5	Very low strength
5-25	Low strength
25-50	Medium strength
50-100	High strength
100-250	Very high strength
>250	Extremely high strength

Rock Mass Quality

RQD Classification	RQD Value (%)	
Very poor quality	<25	
Poor Quality	25 to 50	
Fair Qualty	50 to 75	
Good Quality	75 to 90	
Excellent Quality	90 to 100	

Rock Mass Weathering

Term	Grade	Description
Unweathered (Fresh)	I	No visible sign of material weathering to discoloration on major discontinuity surfaces.
Slightly Weathered	II	Discoloration indicates weathering of rock material and discontinuity of surfaces. All the rock material may be discolored by weathering and may be somewhat weaker than its fresh condition.
Moderatly Weathered	Ξ	Less than half the rock material is decomposed and/or disintegrates to soil. Fresh or discolored rock is present either as a continuous frame work of as core stones.
Highly Weathered	IV	More than half the rock material is decomposed and/or disintegrated to soil. Fresh or discolored rock is present either as a discontinuous frame work or as core stones.
Completely Weathered	V	All rock material is decomposed and/or disintegrated to soil. The original mass structure is largely intact.
Residual Soil	VI	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.

SYMBOLS

General

- $w_N \quad \text{Natural water content within the soil sample}$
- γ Unit weight
- γ' Effective unit weight
- γ_D Dry unit weight
- γ_{SAT} Saturated unit weight
- ρ Density
- ρ_s Density of solid particles
- ρ_w Density of water
- ρ_D Dry density
- ρ_{SAT} Saturated density

- e Void ratio
- n Porosity
- S Degree of saturation
- E₅₀ Fifty percent secant modulus

Consistency

- w_L Liquid Limit
- w_P Plastric Limit
- I_P Plasticity Index
- ws Shrinkage limit
- $I_L \qquad \text{Liquidity index} \quad$
- ${\sf I}_{\sf C} \qquad {\sf Consistency} \ index$
- $e_{\mbox{\scriptsize max}}$ Void ratio in loosest state
- $e_{min} \ \ Void\ ratio\ in\ densest\ state$
- I_D Density index (formerly relative density)

Shear Strength

- S_u Undrained shear strength parameter (total stress)
- c' Effective cohesion intercept
- ϕ' Effective friction angle
- τ_R Peak shear strength
- τ_R Residual shear strength
- δ Angle of interface friction
- μ Coefficient of friction = tan ϕ'

Consolidation

- C_c Compression index (normally consolidated range)
- Cr Recompression index (over consolidated range)
- m_v Coefficient of volume change
- cv Coefficient of consolidation
- T_v Time factor (vertical direction)
- U Degree of consolidation
- σ'_{v} Effictive overburden pressure
- OCR Overconsolidation ratio

APPENDIX C

BOREHOLE LOGS

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: Marionville Road, North Stormont, ON **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

		S	UBS	SURFACE PROFILE		Ş	SAMF	PLE			Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Standard Penetration Resistance Water Content Data	Grain Size (%) Gr Sa Si Cl
		$\left \int_{I} \int$	0-	Geodetic Ground Elevation CLAYEY TOPSOIL with ORGANICS, brown, dry, firm	68.21	1	SS	33	8	9	
-06	Ě		1–		07.40	2	SS	79	5	48 48	
20108-07-06			2-			3	SS	100	1	53 •	
			- 3–	CLAY (CI), trace silt, light brown to grey,firm							
Bentonite			_	@1.52 TO 5.49, very soft		4	SS	100	1		
H			4-							<u>42</u> <u>42</u>	
			5-		62.72	5	тws	79	-	Wate	end of soil drilling ter @ 5.49m BGS
			6-							Bedr	er Refusal Inferred lrock @ 5.49m BGS
0.55mm Silica Sand			- 7- 8- - 9- - 10-	BEDROCK See BH Log 18-4022 WTG-01R For Rock Core Data End of Borehole	59.53						

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 17, 2018

- Sample Type AS Auger Sample SS Split Spoon TWS Thin Walled Shelby Tube BS Block Sample NQ Rock Core W Water Content W Itopit Limit

- WL- Liquid Limit WP- Plastic Limit
- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=480621 N=5007611

0.55mm Silica Sand

Project No: 18-4022

Project: Nation Rise Wind Farm

Site Location: Marionville Road, North Stormont, ON **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-		62.72							
		- 1	thinly laminated to laminated, broken zone @ top of run with significant weathering SHALEY LIMESTONE, black / grey, thinly bedded to thinly laminated, fine grained, some discontinuities with some weathering along horizontal fractures	62.57	2	151	0 87	15	62.57	_گ 82.0	TCR exceeds run length due to fragmented nature of rock
		2	SHALEY LIMESTONE, black / grey, thinly bedded to thinly laminated, fine grained, some discontinuities with minimal weathering along horizontal fractures	59.53	3	152	87	152	59.53		

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=480621 N=5007611

Sheet: 1 of 1

Drill Date: May 17, 2018

Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: Marionville Road, North Stormont, ON **Client: EDPR** SUBSURFACE PROFILE SAMPLE Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 <u>5</u>7 Sample Number Strata Plot (m) Elevation (m) Recovery (%) Sample Type Blows / 0.3m DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 Blows / 0.3m Nell (%) Gr Sa Si Cl 10 20 30 40 50 60 70 80 90 20 40 60 80 70.14 Geodetic Ground Elevation 0 CLAYEY TOPSOIL, trace 25 1 SS 42 8 sand and organics, brown, dry, firm 69.38 Bentonite 28 1 SILTY CLAY (CI), light 2 SS 83 5 brown, moist, firm 68.62 SANDY SILT CLAY 41 (CL), fine grained, trace 3 SS 92 18 gravel, light brown, 2 68.01 moist to wet, very soft 2018-07-20 3 4 BEDROCK 0.55mm Silica Sand See BH Log 18-4022 WTG-02R 5 For Rock Core Data

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

Remarks

Drilled By: Marathon Drilling

End of Borehole

Drill Method: HSA / SS

6

7

Drill Date: May 17, 2018

Sample Type

63.33

- AS Auger Sample SS Split Spoon
- TWS Thin Walled Shelby Tube BS - Block Sample
- NQ Rock Core W - Water Content
- WL- Liquid Limit WP- Plastic Limit
- \bigtriangleup Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

W

WL

WP

Datum: Ground Surface

Location: UTM 18T E=480992 N=5007313

0.55mm Silica Sand

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

Project: Nation Rise Wind Farm

Site Location: Marionville Road, North Stormont, ON **Client: EDPR**

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-		68.01							
		-	SHALEY LIMESTONE, black / grey, fine grained, thinly laminated to laminated, broken zone @ top of run with significant weathering at fractures / discontinuities	67.32	1	66	53	68.5	67.32		
		1	SHALEYLIMESTONE, black / grey, fine grained, thinly bedded to thinly laminated, white intrusion ~ 55cm from top of run, horizontal & angled fractures with some		2	155	63	155			
		2-	weathering at discontinuities	65.77					65.77		
		- 3-	SHALEYLIMESTONE, black / grey, fine grained, thinly bedded to thinly laminated, horizontal & angled fractures with some weathering at discontinuities	64.25	3	142	73	142	64.35		
		4—	LIMESTONE, significantly less shale content, thinly laminated to laminated, fine grained, minimal weathering at discontinuities	64.35	4	102	95	102	04.00		
				63.33					63.33		
			End of Rock Core								
		5-									

Drilled By: Marathon Drilling

Sample Type

Drill Method: Casing / NQ Core

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=480992 N=5007313

Sheet: 1 of 1

Drill Date: May 17, 2018

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: Concession 10-11, North Stormont, ON **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

		S	UBS	SURFACE PROFILE		S	SAMF	PLE				Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 公 公 公 公 公 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
Bentonite			0	Geodetic Ground Elevation CLAYEY TOPSOIL with ORGANICS, trace sand, some gravel, light brown, dry, loose FRACTURED ROCK with sand and gravel, brown, dry, very dense	81.89	1	SS	25	7	0		Exposed Bedrock At Surface 65m North Of Drill Site Spoon Refusal on Inferred Bedrock @ 0.762m BGS
0.55mm Silica Sand T 2018-07-06 T			3- - 4- - 5- - 6- - 7- - 8-	BEDROCK See BH Log 18-4022 WTG-04R For Rock Core Data	74.54							

Drilled By: Marathon Drilling

Drill Method: HSA / SS

 \triangle - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum: Ground Surface

Location: UTM 18T E=482870 N=5006768

Sheet: 1 of 1

Drill Date: May 16, 2018

WP

W

WL

0.55mm Silica Sand

ENGINEERING Project No: 18-4022

Project: Nation Rise Wind Farm Site Location: Concession 10-11, North Stormont, ON **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

		Sl	JBS	SURFACE PROFILE			SAM	IPLE		(m)		
Well	Strata Plot (m)	()	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
			0-	Geodetic Rock Elevation	74.54							
			Ū	SHALEY LIMESTONE, black / grey, fine grained, thinly laminated to	74.08	1	51	52	46	74.08		
			- 1	laminated, top of run is broken & weathered, discontinuities near bottom of run exhibit significant weathering SHALEY LIMESTONE, black / grey, fine grained, thinly laminated to laminated, horizontal, vertical and angled	72.58	2	144	65	150	72.58		
			2	fractures present in core with significant weathering present at discontinuities SHALEY LIMESTONE, black / grey, fine grained, thinly laminated to laminated, some weathering present at discontinuities (horizontal fractures)	71.00		157.5	73	157.5			
			4	SHALEY LIMESTONE, black / grey, fine grained, thinly laminated to laminated, some weathering present at discontinuities (horizontal fractures)	69.50	4	149	73	150	69.50	_ک 95.0	
			6-	SHALEY LIMESTONE, black / grey, fine grained, thinly laminated to laminated, minimal weathering present at discontinuities (horizontal fractures)	67.95	5	155	72	155	67.95		
			7-	End of Rock Core								

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=482870 N=5006768

Sheet: 1 of 1

Drill Date: May 16, 2018

	Pi Si	roject:	Na Na	tion Rise Wind Farm on: Concession 11-12, N R	lorth	Storm	nont,	ON		<i>Compiled By:</i> D.A.Mousseau <i>Reviewed By:</i> E. Giles
		S	UBS	SURFACE PROFILE		S	SAMF	PLE		Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) A G<
ite _			0-	Geodetic Ground Elevation CLAYEY TOPSOIL (CL), trace organics, trace sand, brown, moist to dry, firm	70.39	1	SS	50	6	φ 22
Bentonite			1—	CLAY (CI), trace to some silt, light brown, moist, firm	68.87	2	SS	88	6	◆
2018-07-07			2-	254mm SILTY CLAY (CL), to CLAYEY TILL, some gravel, dark brown, moist, firm	68.11	3	SS	79	6	
			-			4	SS	79	33	
			3–			5	SS	92	13	•
			4—	SILTY TILL (ML), some						
			- 5-	gravel, trace sand, compact		6	SS	83	21	Some Water At 4.57m BGS during drilling
0.55mm Silica Sand			-	@ 7.62m to 8.53m BGS SILTY TILL (ML), with gravel, trace sand, moist						
0.5			-	to wet, compact to dense		7	SS	79	32	
		Y Y Y Y Y Y Y X A A A A A A Y Y Y Y Y Y X A A A A A A Y Y Y Y Y Y X A A A A A A Y Y Y Y Y Y Y	7–							

Project No: 18-4022

Logged By: S.deBortoli Compiled By DA Meuseeeu

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 15, 2018

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=484160 N=5007567

Logged By: S.deBortoli *Compiled By:* D.A.Mousseau

Reviewed By: E. Giles

Client: EDPR SUBSURFACE PROFILE SAMPLE Remarks Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 Δ <u>5</u>7 Sample Number Strata Plot (m) Recovery (%) Elevation (m) Sample Type Blows / 0.3m DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 Blows / 0.3m Well (%) Gr Sa Si Cl 10 20 30 40 50 60 70 80 90 20 40 60 80 7 SS 83 8 64 8 61.86 Auger Refusal Inferred Bedrock @ 8.53m BGS 9 10 BEDROCK See BH Log 18-4022 T20R 11 For Rock Core Data 12 57.80 End of Borehole 13 14

Drilled By: Marathon Drilling

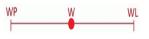
Drill Method: HSA / SS

Project No: 18-4022

Bentonite + Cuttings

Project: Nation Rise Wind Farm

Site Location: Concession 11-12, North Stormont, ON


Drill Date: May 15, 2018

- Sample Type
- AS Auger Sample SS - Split Spoon
- TWS Thin Walled Shelby Tube BS - Block Sample
- NQ Rock Core
- W Water Content
- WL- Liquid Limit WP- Plastic Limit
- △ Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum: Ground Surface

Location: UTM 18T

Project: Nation Rise Wind Farm Site Location: Concession 11-12, North Stormont, ON **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAN	IPLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation	61.86							
		Ŭ	SHALEY LIMESTONE, grey / black, fine grained, laminated to thinly	61.55	1	46	85	30.5	61.55		TRR exceeds run length due to
		-	laminated, slight weathering at top of run, horizontal discontinuities								gragmented nature of core
		1	SHALEY LIMESTONE, grey / black, fine grained, laminated to thinly laminated, excellent rock, only one horizontal (mechanical in nature) break, no weathering		2	155	94	155			
0000				60.00					60.00		
		2— _ 3—	SHALEY LIMESTONE, grey / black, fine grained, laminated to thinly laminated, excellent rock, only one horizontal (mechanical in nature) break, no weathering, extremely weathered and broken section from 10.92m-11.35m BGS		3	142	65	142			
				58.58					58.58		
		-	SHALEY LIMESTONE, grey / black, fine grained, laminated to thinly laminated, excellent rock, only one horizontal (mechanical in nature) break, no weathering	57.80	4	78	99	78.5	57.80		
1			End of Rock Core								
		- 5—									

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=484160 N=5007567

Sheet: 1 of 1

Drill Date: May 15, 2018

Bentonite + Cuttings

		S	UBS	SURFACE PROFILE		5	SAMF	PLE				Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa)	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
			0-	Geodetic Ground Elevation	72.18							
te			-	CLAYEY TOPSOIL (CL), trace ORGANICS, brown, moist to dry, firm	71.40	1	SS	38	8		1 3	
Bentonite			1—	SILTY TILL (ML), trace gravel, brown, moist to dry, compact	71.42	2	SS	88	26		-7	
			2-	100mm GRAVELLY SAND TILL (SG), brown / black, wet, very dense	70.30	3	ss	67	82		_ 11	Auger Refusal On Inferred Bedrock @ 1.88m BGS
2018-07-06			-									1.00111 BGS
			3—									No Water Encountered During Drilling
mm Silica Sand			-4	BEDROCK See BH Log								
0.55r			- 5-	18-4022 WTG-06R For Rock Core Data								
			-		66.45							
			6-	End of Borehole								

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 14, 2018

Project No: 18-4022

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W
 Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge Field Vane

- △ Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E-481950 N=5004643

Sheet: 1 of 1

Logged By: S.deBortoli Compiled By: D.A.Mousseau

Project: Nation Rise Wind Farm *Site Location:* Concession 10-11, North Stormont, ON *Client:* EDPR

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length(cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation 70	0.30							
		_	SHALEY LIMESTONE, black / grey, fine grained, weathered rock at top of run, thinly laminated to laminated, four (4) discontinuities present with some weathering at horizontal fractures	9.49	1	66	60	81	67.97		
		1— - 2—	SHALEY LIMESTONE, black / grey, highly weathered at some discontinuities (horizontal fractures and small voids in rock) fine grained, thinly laminated to laminated	57.97	2	152	55	152	64.12		
		- 3—	SHALEY LIMESTONE, black / grey, fine grained, thinly laminated to laminated, some discontinuities with minimal weathering, excellent rock	6.45	3	155	93	152	66 / 5		
		4-	End of Rock Core	0.45					66.45		

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Drill Date: May 14, 2018

0.55mm Silica Sand

 Sample Type

 AS - Auger Sample

 SS - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS - Block Sample

 NQ- Rock Core

 W - Water Content

 WL_Liquid Limit

 WP - Plastic Content

 △ - Unconfined Compressive

 Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E-481950 N=5004643

Logged By: S.Khan

	Pı Si	roject	: Na c <i>ati</i> e	18-4022 tion Rise Wind Farm o <i>n:</i> Concession 10-11, N PR	North	Storm	10nt,	ON		Co	ogged By: S.Kha ompiled By: D.A eviewed By: E. (.Mousseau
		S	UBS	SURFACE PROFILE		S	SAMF	PLE				Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 22 02 22 02 52 02 52 02 52 Standard Penetration Resistance ○ Blows / 0.3m ○ 10 20 30 40 50 60 70 80 90	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		\sim	0-	Geodetic Ground Elevation	72.88						29	
			_	SILTY CLAY (CI), trace ORGANICS, brown,	72.12	1	SS	63	7	φ	•	
		H	1–	moist, soft to firm		2	ss	50	7			
	Ĭ		_	SILTY CLAY (CI), trace gravel, oxidated, brown	71.36						15	
2018-07-06			2—	to dark brown, moist, firm		3	SS	96	19		1 5	
2018			-	SILT (ML), trace gravel, angular, trace clay, dark		4	ss	83	40			
_			3—	brown, oxidated, moist, compact	69.83							Spoon Refusal Using Casing From 2.89m BGS
0.55mm Silica Sand			- 4_ 5_ 6_ 7_ 8_	@2.28m to 3.05m SILT (ML), trace gravel, dark brown, oxidated, moist, dense BOULDERS, COBBLES, weathered, angled fractures, horizontal fractures, grey, very dense BEDROCK See BH Log 18-4022 WTG-07R For Rock Core Data	67.60							Inferred Bedrock @ 5.18m BGS
			- 9_ - 10_	End of Borehole	64.13							

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 18, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W
 Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge Field Vane

- △ Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=484187 N=5005760

0.55mm Silica Sand

ENGINEERING Project No: 18-4022

Project: Nation Rise Wind Farm

Site Location: Concession 10-11, North Stormont, ON Client: EDPR

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-		67.60							
		5	LIMESTONE, grey, slightly weathered, horizontal fractures, fine grained, laminated	67.17	1	43	82	43	67.17		
		- 1	LIMESTONE, grey, slightly weathered, horizontal fractures, angular fractures, fine grained, laminated	65.65	2	152	75	152	65.65		
		2	LIMESTONE, grey, weathered, horizontal fractures, fine grained, laminated	64.13	3	152	98	152	64.13		
		4-									

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP.-Plastic Content △ - Unconfined Compressive Strength w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=484187 N=5005760

Sheet: 1 of 1

Drill Date: May 18, 2018

	S	UBS	SURFACE PROFILE		ę	SAMF	PLE				Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa)	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
	#\#\#\?	0	Geodetic Ground Elevation 100mm TOPSOIL, SILTY SAND (SM), brown, dry SILTY CLAY (CI), dark brown, moist, firm, some	70.07	1	SS	71	5	φ	27	
		1—	SILTY CLAY (CI), oxidized, brown to grey, moist, soft		2	SS	83	4	•		
		2-	@1.52m to 2.28m BGS SILTY CLAY (CI), grey,		3	SS	79	2		5 4	
-•		3	moist, very soft		4	SS	100	WН		7 0	
			@ 2.28m to 6.55m BGS SILTY CLAY (CI), grey, wet, very soft		5	TWS	100	-			
		4—									
		- 5-			6	SS	100	wн		• <u>•</u> 64	
		-							ے 23		

Project No: 18-4022

Logged By: S.Khan Compiled By: D & Mousseau

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 18, 2018

- Sample Type

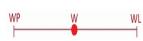
 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS Thin Walled Shelby Tube
 BS

 BS
 - Block Sample

 NQ
 - Rock Core


 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 △
 - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Location: UTM 18T E=485446 N=5006565

Reviewed By: E. Giles Site Location: Concession 10-11, North Stormont, ON **Client: EDPR** SUBSURFACE PROFILE SAMPLE Remarks Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 <u>5</u>7 Sample Number Strata Plot (m) Recovery (%) Elevation (m) Blows / 0.3m Sample Type DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 Blows / 0.3m Well (%) Gr Sa Si Cl 10 20 30 40 50 60 70 80 90 20 40 60 80 7 SS 100 15 63.52 0.55mm Silica Sand SAND (SW), coarse to 7 medium grained, trace GRAVEL, grey, moist, compact 62.40 Auger Refusal Inferred Bedrock @ 7.62m BGS 8 9 Bentonite + Cuttings BEDROCK See BH Log 10 18-4022 T20R For Rock Core Data 11 58.22 End of Borehole 12

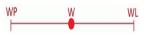
Project No: 18-4022 **Project:** Nation Rise Wind Farm

Logged By: S.Khan Compiled By: D.A.Mousseau

Drilled By: Marathon Drilling

Drill Method: HSA / SS

- AS Auger Sample SS Split Spoon
- TWS Thin Walled Shelby Tube BS - Block Sample
- NQ Rock Core



- WL- Liquid Limit WP- Plastic Limit
- △ Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum: Ground Surface

Location: UTM 18T

Sheet: 2 of 2

Drill Date: May 18, 2018

Bentonite + Cuttings

ENGINEERING Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: Concession 10, 11, No.

Site Location: Concession 10-11, North Stormont, ON Client: EDPR

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

		SAMPLE				(m)					
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
0000000		0-	Geodetic Rock Elevation	62.40							
9. 45 % 48 % 26 % 48 % 48 % 48 % 48 % 48 % 48 % 48 % 4		- 1-	LIMESTONE, grey, weathered, laminated with thin black bedding, horizontal fractures	61.16	1	124	88	124	61.16		
		- 2—	LIMESTONE, grey, slightly weathered, laminated with thin black bedding, horizontal fractures, vertical fractures from 9.75m to 11.88m BGS	59.74	2	152	68	152	59.74		
		_	LIMESTONE, grey, very slightly weathered, laminated with thin black bedding, horizontal fractures	58.22	3	152	82	152	58.22		

Drilled By: Marathon Drilling

AS - AI SS - SI

Drill Method: Casing / NQ Core

Drill Date: May 18, 2018

 Sample Type

 AS - Auger Sample

 SS - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS - Block Sample

 NQ- Rock Core

 W - Water Content

 WL.Liquid Limit

 WP. Plastic Content

 △ - Unconfined Compressive

 Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=485446 N=5006565

	P S	roject	: Na c <i>ati</i> e	[•] 18-4022 tion Rise Wind Farm o <i>n:</i> County Rd 13 & Fin PR	ch, Nc	orth S	torm	ont	, ON	<i>Logged By:</i> A.Pleau <i>Compiled By:</i> D.A.Mousseau <i>Reviewed By:</i> E. Giles
ŀ		SUBSURFACE PROFILE SAMPLE				SAMF	PLE		Remarks	
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 公<
ſ	1770		0-	Geodetic Ground Elevation	74.75					
Bentonite	•		-	SILTY CLAY TOPSOIL (CL), trace organics, trace gravel, brown, firm	73.99	1	SS	54	5	•23
B			1—	SILTY CLAY (Ci) to clay SILT, some GRAVEL, cobbles & boulders, brown / grey, hard	73.23	2	SS	83	39	
2018-07-09	Ť		2-	GRAVEL (GM), TRACE SILT, boulder fragments, grey, dry to moist, very dense		3	SS	67	100+	
2018-		****	-	SILTY SAND (SM), with some gravel, grey / brown, very dense	72.47	4	SS	79	46	
			3-			5	SS	71	64	No Water Encountered During Drilling
sand T			4-	SILT TILL (ML), with sand, some gravel, grey,						
			5—	moist, compact		6	SS	58	22	
0.55mm Silica Sand			6-		68.65					
	Drilled By: Marathon Drilling Drill Method: HSA / SS Drill Date: May 7, 2018					AS - SS - TWS BS - NQ - WL-L WP-	ple Typ Auger S Split Sp - Thin W Block Sa Rock Co Water C iquid Lir Plastic L ïeld Van	ample con alled s ample ore content nit imit	Shelby ⁻	w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer WP W WL E=483097 N=5003468 Sheet: 1 of 2

Drilled By: Marathon Drilling

Datum: Ground Surface

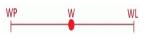
Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: County Rd 13 & Finch, North Stormont, ON **Client: EDPR**

Logged By: A.Pleau Compiled By: D.A.Mousseau Reviewed By: E. Giles

	SUBSURFACE PROFILE					S	SAMF	PLE		Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) Grain Size (%) Standard Penetration Resistance Water Content Data Blows / 0.3m (%) 10 20 30 40 50 60 70 80 90 20 40 60 80
Bentonite + Cuttings			7- 7- 8- 9- 10- 11- 12-	BEDROCK See BH Log 18-4022 T20R For Rock Core Data	68.07	7	SS	79	100+	10 20 30 10 30 10<

Drilled By: Marathon Drilling

Drill Method: HSA / SS



 \triangle - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum: Ground Surface

Location: UTM 18T

Sheet: 2 of 2

Drill Date: May 7, 2018

Project: Nation Rise Wind Farm

Site Location: County Road 13 & Finch, North Stormont, ON

Logged By: A.Pleau Compiled By: D.A.Mousseau **Reviewed By: E. Giles**

	S	UBS	URFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0 —	Geodetic Rock Elevation	68.07							
		_	SHALEY LIMESTONE, very thinly bedded to laminated, grey,slightly weathered	67.33	1	63	83	74	67.33		
		1	SHALEY LIMESTONE, very thinly bedded to laminated, slightly weathered, grey	65.81	2	143	94	152	65.81		
			SHALEY LIMESTONE, very thinly bedded to laminated, grey to dark grey, slightly weathered End of Rock Core	64.29	3	137	90	152	64.29		
		4-									

Drilled By: Marathon Drilling

Drill Method: HSA / SS

TULLOCH ENGINEERING

Client: EDPR

Bentonite + Cuttings

Project No: 18-4022

Drill Date: May 8, 2018

Sample Type AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=483097 N=5003468

Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: County Rd 13 & Finch, North Stormont, ON **Client: EDPR**

Logged By: A.Pleau Compiled By: D.A.Mousseau Reviewed By: E. Giles

		S	UBS	SURFACE PROFILE		S	SAMF	PLE				Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 52 05 52 05 52 05 52 Standard Penetration Resistance ○ Blows / 0.3m ○ 10 20 30 40 50 60 70 80 90	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		~ ~	0-	Geodetic Ground Elevation	74.00							
		$l_{l}^{\prime\prime} l_{l}^{\prime\prime} l_{l}^{\prime} l_{l}^{\prime\prime} l_{l}^{\prime\prime} l_{l}^{\prime\prime} l_{l}^{\prime\prime} l_{l}^{\prime\prime} l_{l}^{\prime\prime} l_{l}^{\prime\prime} l_{l}^{\prime\prime} l_{l}^{\prime} l_{l$	_	SILTY CLAY TOPSOIL (CL), trace ORGANICS, brown to grey, moist, firm	73.24	1	SS	92	6	φ	3 1	
Bentonite			1—	CLAYEY SILT TILL (CI), with some gravel, trace till, grey bits of brown, moist, stiff		2	SS	100	8			
			2-	@ 1.52m to 2.28m BGS (CM) SILT (ML), some gravel, trace sand, till,		3	SS	71	30		•	
		HH HH		greyish brown, moist, compact		4	SS	25	12			
2018-07-20	-		3-	@ 2.28m to 3.05m BGS SILT TILL (ML), with trace gravel, greyish brown, moist, compact	70.95	5	SS	75	14	φ	9	No Water Encountered During Drilling
			4-	SILT TILL (ML), some gravel, trace clay, grey, moist, compact	69.43							
					00.40	6	SS	33	13	φ		
and			5-	SILT TILL (ML), some gravel, trace sand, grey,								
0.55mm Silica Sand			_	wet, compact								
5mm (6-		67.90							
0.5			_	SILT TILL (ML), some		7	SS	54	10	Φ		
			7–	gravel, trace clay, grey, wet, compact								
	2002		-		66.38							
			8-			8	SS	83	9		8	

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 8, 2018

 \triangle - Field Vane

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS
 - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 V
 - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=483354 N=5003162

	S	UBS	SURFACE PROFILE		5	SAM	PLE		Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) ^Δ (S)
80 80 80 80 80 80 80 80 80 80		- 9–	SILT TILL (ML), some gravel, trace sand, grey, wet, loose to compact	64.86					
		- 10-	SILTY TILL (ML), 75mm seam of sand, some gravel, wet, very dense		9	SS	54	76	
	Ħ	11-	CLAYEY SILT (ML), TILL, sand seam, rock fragments, wet, hard	63.33 63.13	10	SS	88	100+	Auger Refusal On Inferred Bedrock @ 10.87m BGS
		12— _ 13—	BEDROCK						
		- 14—	See BH Log 18-4022 WTG-11R For Rock Core Data	59.30					

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 8, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 △
 Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=483354 N=5003162

Project No: 18-4022

Project: Nation Rise Wind Farm

Site Location: County Road 13 & Finch, North Stormont, ON **Client: EDPR**

Logged By: A.Pleau Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
000000		0-	Geodetic Rock Elevation	63.13							
		- 1—	SHALEY LIMESTONE, grey / black, very thinly bedded to thinly laminated, fine grained, slightly weathered	61.78	1	110	76	135	61.78		
									00		
		- 2	SHALEY LIMESTONE, grey / black, very thinly bedded to thinly laminated, fine grained, slightly weathered	60.26	2	152	89	152	60.26		
		3—	SHALEY LIMESTONE, grey / black, very thinly bedded to thinly laminated, fine grained, slightly weathered	59.30	3	101	96	96	59.30		
			End of Rock Core								
		4 —									

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Bentonite + Cuttings

Drill Date: May 9, 2018

Sample Type AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=483354 N=5003162

	Pr Si	oject:	: Na catio	18-4022 tion Rise Wind Farm o <i>n:</i> Forgues Road, North PR	h Sto	rmont	, ON				Co	ogged By: A.Ple ompiled By: D.A eviewed By: E. (.Mousseau
		S	UBS	SURFACE PROFILE		S	SAMF	٢E		Γ			Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m		Undrained Shear Strength (Cu, kPa) 2 3	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		~ ~	0-		70.81								
Bentonite		$\frac{1}{2}$	_	CLAY TOPSOIL (CL), TRACE SILT, brown, moist to dry, firm	70.05	1	SS	52	7		¢ ⁷	_24	
2018-07-20	Ĩ		1–			2	SS	60	wн	0	<u> </u>		
2018			2–	SILTY CLAY (CI), brown		3	SS	96	wн	0		2 7	
			- 3-	/ grey, very moist, very soft							_3 ³ 1 _3 ³ 1		
0.55mm Silica Sand	•		_		67.00	4	SS	100	wн	0		5 2	Water Encountered @ 3.81m BGS Auger Refusal On
0.55mm	200 200 200 200 200 200 200 200 200 200		4-										Inferred Bedrock @ 3.81m BGS
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		5—										
	0000		-	BEDROCK									
Cuttings	00000000000000000000000000000000000000		6-	See BH Log 18-4022 WTG-12R For Rock Core Data									
Bentonite + Cuttings	242 C 242 C		7–		63.50								
			_	End of Borehole									
			8-										

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 6, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 △
 Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=484260 N=5004075

ENGINEERING Project No: 18-4022

TULLOCH

Bentonite + Cuttings

Project: Nation Rise Wind Farm

Site Location: Forgues Road, North Stormont, ON Client: EDPR Logged By: A.Pleau Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	PLE		(m		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation	67.00							
		0	SHALEY LIMESTONE, grey / black, top 20cm weathered rock, laminated, fine grained	66.54	1	34	76	46	66.54		
		1	SHALEY LIMESTONE, grey / black, laminated, fine grained	65.02	2	152	28	152	65.02		
		2	SHALEY LIMESTONE, grey / black, laminated, fine grained	63.50	3	152	78	152	63.50		
		4-									

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 6, 2018

 Sample Type

 AS - Auger Sample

 SS - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS - Block Sample

 NQ- Rock Core

 W - Water Content

 WL-Liquid Limit

 WP-Plastic Content

 △ - Unconfined Compressive

Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=484260 N=5004075

	P S	roject	: Na c <i>ati</i> e	18-4022 tion Rise Wind Farm on: Concession 7-8, No 'R	rth Sto	ormo	nt, O	N		<i>Logged By:</i> A.Pleau <i>Compiled By:</i> D.A.Mousseau <i>Reviewed By:</i> E. Giles
Ì		S	UBS	SURFACE PROFILE		S	SAME	PLE		Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) ^Δ
		~	0-	Geodetic Ground Elevation	69.23					
		$l_l^{l_l}$	-	100mm CLAY / TOPSOIL WITH ORGANICS, transitioning to 125mm sand seam over clay,	68.47	1	SS	56	6	• 22
Bentonite			1–	CLAYEY SILT (CI), trace gravel, brown, moist, stiff	67.71	2	SS	100	12	31
			2-			3	SS	75	31	10
2018-07-07	đ		- 3-	SILT TILL (ML), trace gravel, fractured rocks , grey / brown, moist, very		4	SS	25	100+	
20			-	dense						
			- 5-		64.66	5	SS	31	31	
0.55mm Silica Sand		HH H	_	SILTY TILL (ML), 75mm fractured rocks, grey, brown, dense						
5mm			6-		63.13					
0.5			_			6	SS	35	18	
			7–							

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 5, 2018

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 △
 - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=485706 N=5001932

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: Concession 7-8, North Stormont, ON **Client: EDPR**

Logged By: A.Pleau Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE		S	SAMF	PLE				Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) 20 20 20 20 20 20 20 20 20	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		- 8-	SILTY TILL (ML), some sand and gravel, grey / brown, compact		7	SS	83	24	• • • • • • • • • • • • • • • • • • •	₽ Ţ	
		9-		60.09							
		-	SAND (SW) WITH GRAVEL, trace fines and fractured rock, grey, wet, dense	59.40	8	SS	75	46	S	9	33.1 62.7 4.2 Auger Refusal On
		10- - 11- - 12- - 13-		55.80							Inferred Bedrock @ 9.83m BGS
		- 14—	End of Borehole								

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Bentonite + Cuttings

Drill Date: May 5, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W
 Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge Field Vane

- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=485706 N=5001932

Logged By: A.Pleau Compiled By: D.A.Mousseau Reviewed By: E. Giles

SUBSURFACE PROFILE SAMPLE Run Depth Elevation (m) (cm) Sample Number Strata Plot (m) Remarks Elevation (m) Run Length DESCRIPTION Ē (cm (%) **Unconfined Compressive Strength** Depth (TCR RQD ٨ (MPa) Nell 10 20 30 40 50 60 70 80 90 100110120130140150 59.40 Geodetic Rock Elevation 0 SHALEY LIMESTONE, grey / black, laminated, fine 50 43 30 1 grained, horizontal 59.10 59.1 fractures with visible weathering SHALEY LIMESTONE, 1 grey / black, laminated, fine 158 59 165 2 grained, horizontal and vertical fractures containing visible weathering 57.45 57.45 2-SHALEY LIMESTONE, grey / black, laminated, fine grained, horizontal 156 165 3 65 fractures with visible weathering, vertical fractures present 3-55.80 55.80 End of Rock Core

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Client: EDPR

Bentonite + Cuttings

Project No: 18-4022

Project: Nation Rise Wind Farm

Site Location: Concession 7-8, North Stormont, ON

Drill Date: May 5, 2018

 Sample Type

 AS - Auger Sample

 SS - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS - Block Sample

 NQ- Rock Core

 W - Water Content

 WL.Liquid Limit

 WP - Plastic Content

 △ - Unconfined Compressive

 Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=485706 N=5001932

Logged By: S.deBortoli

	Pr Si	roject.	: Na catio	18-4022 tion Rise Wind Farm on: County Rd 13, North 'R	Stor	mont,	, ON			<i>Logged By:</i> S.deBortoli <i>Compiled By:</i> D.A.Mousseau <i>Reviewed By:</i> E. Giles	
		S	UBS	SURFACE PROFILE		S	SAMF	PLE		Remarks	
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u>	
		۲ ۲	0-		67.32						
2018-07-21	-	12121	_	CLAY TOPSOIL trace ORGANICS (CL), brown, moist, firm	66.56	1	SS	56	7	4 3	
2018			1–	SILTY CLAY (CI), brown, moist, firm	65.80	2	SS	79	5	48	
			2-			3	SS	100	WН	47	
Bentonite			3–							$\begin{array}{c} {}_{\Delta}^{46} \\ {}_{\Delta}^{35} \end{array}$	
			-	@ 1.52m to 610m BGS SILTY CLAY (CI), brown, moist, very soft		5	SS	100	WН	1	
			4-	moist, very solt							
			5-			6	SS	100	WН	1 p1 •92	
0.55mm Silica Sand			-	@ 6.10m to 7.62m BGS silty CLAY (CI), grey, wet, very soft						Δ^{31} Δ^{33} Water Encountered	Ø
0.55mn			_			7	SS	100	1	48 6.1m BGS	Ŭ
			7-		59.70					42	
	2000 2000 2000 2000		8-	SILT TILL trace clay, some gravel, (ML), grey,		8	SS	17	100) Spoon Refusal @7.9m BGS	
ttings			- 9-	moist, very dense	58.18						
Bentonite + Cuttings	20%20% 0%20%		_	SILT (ML) with gravel, trace clay, grey, moist to		9	SS	33	100	9 Spoon Refusal @9.4m BGS	
Bent			10-	dry, hard			ole Typ			Deturni Cround Surfac	

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: April 28, 2018

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane

- △ Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=487011 N=5004960

Logged By: S.deBortoli

	S	UBS	SURFACE PROFILE		5	SAMF	PLE				Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa)	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
20000000000000000000000000000000000000		-		56.65	10	ss	63	56			
2000 2000 2000 2000 2000 2000 2000 200			SILTY GRAVEL TILL		10						
0.0000000000000000000000000000000000000		12-	(SG), brown, wet, very dense		11	SS	67	51	•	12	
680°660°56		13—		53.60							
0.0000000000000000000000000000000000000		14—	SILTY TILL (ML) some gravel brown, moist,		12	SS	63	84		_10	
202 000 000 000 000		15—	very dense	52.08							Auger Refusal On Inferred Bedrock @
2000000 20000000 2000000		- 16-									15.24m BGS
0%0%0%0 0%0%0%0%0 0%0%0%0%0%0%0%0%0%0%0		- 17—									
820%2% 860%2% 860%2%		- 18—	BEDROCK See BH Log 18-4022 WTG-18R For Rock Core Data								
		-									
2000 000 000		19-	End of Borehole	47.99							
		20-									

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: April 28, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W
 Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge Field Vane

- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=487011 N=5004960

Bentonite + Cuttings

ENGINEERING Project No: 18-4022 Project: Nation Rise Wind Fa

Project: Nation Rise Wind Farm *Site Location:* County Rd 13, North Stormont, ON *Client:* EDPR

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation 5	52.08							
		1-	LIMESTONE / SHALE, grey, fine grained, medium / soft rock, weathered area @ approx. 77cm from top of run, laminated to thinly laminated, 45cm long intrusion @ 61cm from top of run		1	136	71	127	50.04		TCR is more than run length due to fractured / weathered sections
			5	50.81					50.81		
		2	LIMESTONE / SHALE, grey, fine grained, medium / soft rock, weathered zone 25cm from top of run, laminated to thinly laminated	49.39	2	152	82	142	49.39		
		3		47.99	3	140	45	140	47.99		
			End of Rock Core								
		_									

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 1, 2018

 Sample Type

 AS - Auger Sample

 SS - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS - Block Sample

 NQ- Rock Core

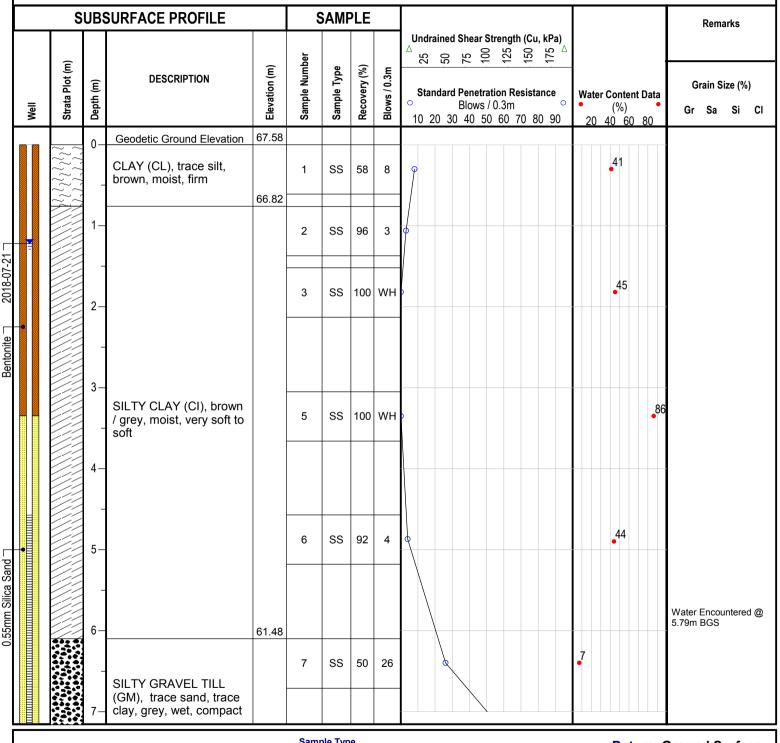
 W - Water Content

 WL - Liquid Limit

 WP - Plastic Content

 △ - Unconfined Compressive

 Strength


w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=487011 N=5004960

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: Nine Mile Road, North Stormont, ON Client: EDPR SUBSURFACE PROFILE SAMPLE

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 1, 2018

AS - Auger San

△ - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

W

WL

WP

Datum: Ground Surface

Location: UTM 18T E=486785 N=5004255

Site Location: Nine Mile Road, North Stormont, ON **Client: EDPR** SUBSURFACE PROFILE SAMPLE Remarks Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 Δ ۲5 ۲ Sample Number Strata Plot (m) Elevation (m) Recovery (%) Sample Type Blows / 0.3m DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 Blows / 0.3m Nell (%) Gr Sa Si Cl 10 20 30 40 50 60 70 80 90 20 40 60 80 59.96 8 SS 73 8 87 \sim 8 SILTY SAND AND GRAVEL (GM), TILL, • grey / brown, wet, very ... dense 9 58.44 GRAVEL TILL (GM), with sand, some silt, 57.98 brown / grey, wet, very Auger Refusal On dense Inferred Bedrock @ 9.6m BGS 10 Bentonite + Cuttings -11 BEDROCK See BH Log 12-18-4022 WTG-20R For Rock Core Data 13 54.05 End of Borehole 14

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Project No: 18-4022

Project: Nation Rise Wind Farm

Drill Date: May 1, 2018

Sample Type

- AS Auger Sample SS Split Spoon
- TWS Thin Walled Shelby Tube
- BS Block Sample NQ - Rock Core
- Water Content w
- WL- Liquid Limit WP- Plastic Limit
- △ Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

W

WL

WP

Datum: Ground Surface

Location: UTM 18T E=486785 N=5004255

Sheet: 2 of 2

Logged By: S.deBortoli Compiled By: D.A.Mousseau

Reviewed By: E. Giles

Bentonite + Cuttings

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

Project: Nation Rise Wind Farm Site Location: Nine Mile Road, North Stormont, ON **Client: EDPR**

	5	SUB	SURFACE PROFILE			SAM	PLE) E		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		-0	Geodetic Rock Elevation	57.98							
		-	SHALEY LIMESTONE grey, fine grained, very thinly bedded, soft to medium rock	57.17	1	125	26	81	57.17		TCR is more than run length due to fractured / weathered sections Broken zone approx. 63cm from top of run
									•••••		
		2-	SHALEY LIMESTONE, grey, fine grained, laminated to very thinly bedded with visible turbidites, medium strength rock, 3 discontinuites with slight weathering at discontinuities	55.57	2	154	93	160	55.57		
2009 0000				55.57					55.57		
င်းနိုင်ငံလွှင့် လူနိုင်ငံနိုင်ငံလွှင့် လူနိုင်ငံနိုင်ငံနိုင်ငံနိုင်ငံနိုင်ငံနိုင်ငံနိုင်ငံနိုင်ငံနိုင်ငံနိုင်င လူနိုင်ငံနိုင်ငံနိုင်ငံနိုင်ငံကိုနိုင်ငံကိုင်ငံနိုင်ငံနိုင်ငံတွင် လူနိုင်ငံနိုင်ငံ ကျွန်ုင်ငံနိုင်ငံနိုင်ငံကျွန်ုင်ငံနိုင်ငံ လူနိုင်ငံနှင့် လူနိုင်ငံနိုင်ငံ		3-	SHALEY LIMESTONE, grey, fine grained, 4 discontinuities with minimum weathering at horizontal fractures, laminated to thinly bedded, medium strength rock, turbidites present		3	149	98	152			
0000				54.05					54.05		
		4-	End of Rock Core								
		<u> </u>									

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 1, 2018

Sample Type AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=486785 N=5004255

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: Nine Mile Road, North Stormont, ON **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

		S	UBS	SURFACE PROFILE		Ş	SAMF	٢E		Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) Grain Size (%) Standard Penetration Resistance Water Content Data Blows / 0.3m (%) 10 20 30 40 50 60 70 80 90 20 40 60 80
		\sim	0-	Geodetic Ground Elevation	67.67					
		22222	_	CLAY TOPSOIL (CL), trace silt, trace organics, brown / red, moist, firm		1	SS	67	8	°
-20]	-		1–		66.67	2	SS	92	5	ϕ
2018-07-20			2-	SILTY CLAY (CI), brown / grey, moist, firm to very		3	SS	99	1	4 4
Bentonite			_	soft						49 42
Be			3-			5	тws	100	-	
			4—							
	-•		- 5-			6	SS	100	₩Н	, 5 0
0.55mm Silica Sand			-							۵ ¹⁹ ۵ ¹⁹
55mm Sil			6-			7	SS	100	wн	
0			7-	@ 4.57m to 12.19m						19
				BGS SILTY CLAY (CI), brown / grey, moist to						A ¹⁹
	2000 2000 2000 2000 2000 2000 2000 200		8-	wet, very soft		8	SS	100	wн	52
Bentonite + Cuttings	0.000000000000000000000000000000000000		- 9-							∆ ²¹ ∆ ²³
intonite +	0.000 0.0000 0.00000 0.00000 0.000000		-			9	ss	100	wн	
Be	800 000		10-							

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 2, 2018

 \triangle - Field Vane

Sample Type AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ - Rock Core W - Water Content W - Itopit Limit WL- Liquid Limit WP- Plastic Limit

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=486717 N=5003432

Logged By: S.deBortoli

Compiled By: D.A.Mousseau

Project: Nation Rise Wind Farm Reviewed By: E. Giles Site Location: Nine Mile Road, North Stormont, ON **Client: EDPR** SUBSURFACE PROFILE SAMPLE Remarks Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 ۲5 ۲ Sample Number Strata Plot (m) Recovery (%) Elevation (m) Sample Type Blows / 0.3m DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 Blows / 0.3m Nell (%) Gr Sa Si Cl 10,20 30 40 50 60 70 80 90 20 40 60 80 23 40 10 SS 100 WH 11 _35 _____31 12 55.48 6 14 SS 56 14 SANDY SILT TILL (SG), with gravel seam,, 13 brown / grey, wet, Bentonite + Cuttings compact 53.96 5 14-15 SS 60 46 SILTY SAND & GRAVEL (SG), TILL, grey / brown, wet, very dense 15 52.43 SILTY GRAVEL TILL 16 SS 57 44 (GM), some sand, brown / grey, wet, very dense 51.67 16 Auger Refusal On Inferred Bedrock @ 16.03m BGS 17 BEDROCK 18 See BH Log 18-4022 WTG-21R For Rock Core Data 19 47.86 20 End of Borehole

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Project No: 18-4022

Drill Date: May 2, 2018

Sample Type

- AS Auger Sample SS Split Spoon
- TWS Thin Walled Shelby Tube
- BS Block Sample

- Water Content w
- WL- Liquid Limit WP- Plastic Limit
- △ Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

W

WL

WP

Datum: Ground Surface

Location: UTM 18T E=486717 N=5003432

Bentonite + Cuttings

ENGINEERING Project No: 18-4022

Project: Nation Rise Wind Farm

Site Location: Nine Mile Road, North Stormont, ON Client: EDPR

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length(cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
02020		0-		51.67							
90,000,000,000,000,000,000 0,000,000,000		_	LIMESTONE / SHALE, grey, fine grained, medium / soft rock, weathered area @ approx. 77cm from top of run, laminated to thinly laminated, 45cm long intrusion @ 61cm fron top of run	50.91	1	66	50	155	50.91		
		1— - 2—	LIMESTONE / SHALE, grey, fine grained, medium / soft rock, weathered zone 25cm from top of run, laminated to thinly laminated	49.36	2	151	82	76	49.36		
လ် ပြန်လေး ပြန်လေး ပြန်လို ပြန်လိုင် မန်း ပြန်နော် လန်း ပြန်နိုင် မန်း ပြန်လေး စစ် ပြန်လေးရှိသေး ပြန်လေး ပြန်နော် ပြန်နော် ပြန်နော် ပြန်နော် ပြန်နော် ပြန်နော် စစ် ပြန်နော် ကျွန်းလေးရေး ကျွန်းလေးရေး လေးရေးလေးရေး လေးရောင် ရောင် စစ် လေးရောက်ကျွန်းလေးရေးလေးရေးလေးရေးလေးရောက် စစ် စစ် စစ် စန်နော		- 3—	LIMESTONE / SHALE, grey, fine grained, soft rock, very weathered zone 111cm from top of run, laminated to thinly laminated	47.86	3	147	85	150	47.86		
2004	ИГ		End of Rock Core	-1.00					+1.00		
		4-									

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 2, 2018

 Sample Type

 AS - Auger Sample

 SS - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS - Block Sample

 NQ- Rock Core

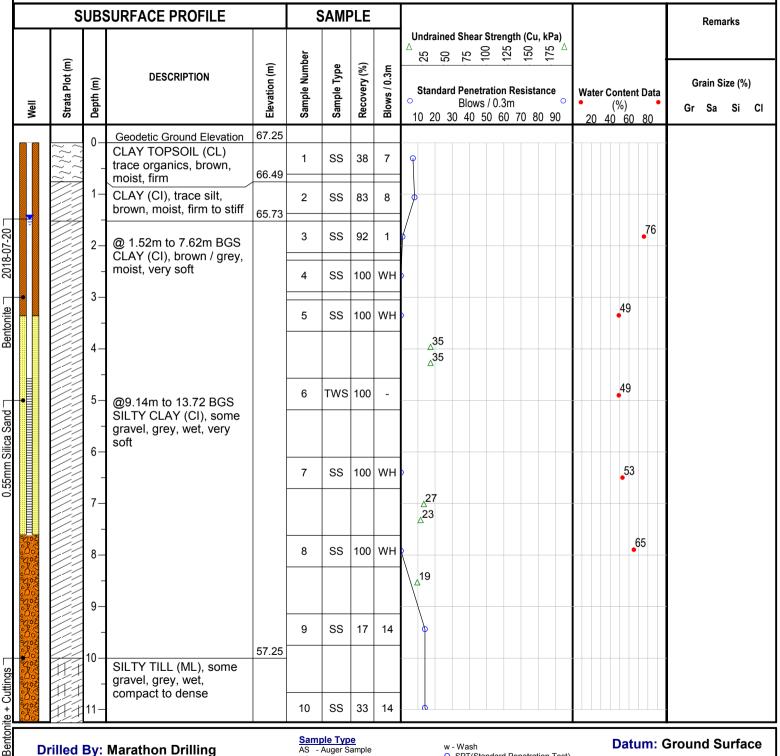
 W - Water Content

 WL.Liquid Limit

 WP - Plastic Content

 △ - Unconfined Compressive

 Strength


w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=486717 N=5003432

Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: Nine Mile Road, North Stormont, ON **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 3, 2018

Sample Type

WP- Plastic Limit

 \bigtriangleup - Field Vane

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ - Rock Core W - Water Content WL- Liquid Limit

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP W WL

Datum: Ground Surface

Location: UTM 18T E=487076 N=5002532

Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: Nine Mile Road, North Stormont, ON **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

		S	UBS	SURFACE PROFILE		S	SAMF	۶LE		Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) K G K G K G K G K G K G K G K G K G
	0.00									
			12—							
	0000 0000 0000 0000	H+				11	SS	38	35	8
	000 2000 2000		13—							
	200 200 200	Ħ	-	125mm SAND AND	53.53					
	000 000 000	* * * * * * * * * * * * * * * * * * * *	14—	GRAVEL SEAM transitioning to SILTY		12	SS	33	11	
_	202 00		- 15	TILL (ML), some gravel, grey, wet, compact						
Bentonite + Cuttings	000 000 000	* * * * * * * * * * * * * * * * * * *	_	200mm SAND WITH GRAVEL SEAMS,	52.01	13	SS	75	50	
ite + Cu	5000 0000 0000		16-	transitioning to SILTY TILL (ML), some						
Benton	000 000 000		_	gravel,wet, dense	50.50					
	5000 5000 5000		17—	GRAVEL (GW), some sand, some silt till, brown / black, wet, very	49.88	14	SS	42	66	
			- 18—	dense						
	000		10-							
	2000 2000 2000		19—							
			_	BEDROCK See BH Log						
	00000000000000000000000000000000000000		20 —							
			_		46.58					
			21—	End of Borehole						
			- 22-							
			<u> </u>							

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 3, 2018

WL- Liquid Limit WP- Plastic Limit

 \triangle - Field Vane

Sample Type AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ - Rock Core W - Water Content W - Itopic Limit

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=487076 N=5002532

Bentonite + Cuttings

ENGINEERING Project No: 18-4022

Project: Nation Rise Wind Farm

Site Location: Nine Mile Road, North Stormont, ON Client: EDPR

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

		S	UBS	SURFACE PROFILE			SAM	IPLE		(m)		
Well		Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
	_		0-	Geodetic Rock Elevation	49.88							
			_	SHALEY LIMESTONE, grey / black, very thinly bedded to laminated, fine grained, with discontinuities & broken section, horizontal fractures with some weathering	10.01	1	97	33	96.5	49.01		
	00				48.91					48.91		
			2—	SHALEY LIMESTONE, grey / black, very thinly bedded to laminated, fine grained, discontinuities present (13 breaks) broken core area near top of run, horizontal fractures with severe weathering in shaley layers	47.50	2	150	55	142	47.50	_∆ 94.0	
				SHALEY LIMESTONE, grey / black, very thinly bedded to laminated, fine grained, discontinuities present (7 breaks), broken core area near top of run, horizontal fractures with some weathering in shaley layers End of Rock Core	46.58	3	82	57	91	<u>46.58</u>		
			4-									

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type

 AS - Auger Sample

 SS - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS - Block Sample

 NQ- Rock Core

 W - Water Content

 WL - Liquid Limit

 WP - Plastic Content

 △ - Unconfined Compressive

 Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=487076 N=5002532

Sheet: 1 of 1

Drill Date: May 4, 2018

Logged By: S.deBortoli

	P S	Project:	: Na catio	18-4022 tion Rise Wind Farm on: County Road 9, Nor PR	th Sto	rmon	it, ON	N		Compiled By: D.A.Mousseau Reviewed By: E. Giles
		S	UBS	SURFACE PROFILE		Ş	SAMF	۶LE		Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) <u>2</u> <u>2</u>
		2	0-	Geodetic Ground Elevation	70.85					
e		λ_l^{l}	_	CLAYEY TOPSOIL, brown, moist, firm		1	SS	67	10	₽
Bentonite		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			70.09					
Be			1–			2	SS	63	14	Φ I I I I I I I I I I I I I I I I I I I
		* *		SILTY TILL (ML), some to trace gravel, brown,						
			2-	moist to dry, compact	68.72	3	SS	38	14	6 Inferred Bedrock @
			_							2.13m BGS Water @ 2.63m BGS
2018-07-09			3–							
_ pr			4-	BEDROCK See BH Log						
0.55mm Silica Sano			_	18-4022 WTG-25R For Rock Core Data						
0.55m			5—							
	E				65.04					
			6-	End of Borehole						

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 28, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W
 Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge Field Vane

- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=488426 N=5001668

TULLOCH Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: County Road 9, North Stormont, ON

ENGINEERING

Client: EDPR

0.55mm Silica Sand

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	IPLE) E		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation	68.72							
		_	SHALEY LIMESTONE, grey / black, highly fractured zone @ top of run, fine grained, thinly laminated to laminated, very poor quality rock	68.06	1	66	23	66	<u>68.06</u>		
			SHALEY LIMESTONE, grey / black, horizontal mechanical fractures along weak shale sections, very thinly bedded to laminated, some weathering at discontinuities, fine grained, excellent quality rock	66.56	2	149	94	150	<u>66.56</u>		
		- 3-	SHALEY LIMESTONE, grey / black, horizontal mechanical fractures along weak shale sections, very thinly bedded to laminated, some weathering at discontinuities, fine grained, good quality rock	65.04	3	152	89	152	65.04	_ ^{48.0}	
		4-	End of Rock Core								

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Drill Date: June 2, 2018

Sample Type AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=488426 N=5001668

Logged By: S.deBortoli

		S	UBS	SURFACE PROFILE		5	SAMF	PLE	1			Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m		Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		~ ~	0-	Geodetic Ground Elevation	79.27							
ום			-	CLAYEY TOPSOIL (CL), some gravel trace organics, light brown, moist, very stiff	-	1	SS	54	19	Q	_ 18	
			1–	SILTY TILL (ML), with gravel, brown, moist to dry, dense	78.51 78.05	2	SS	58	41		6	Inferred Bedrock @ 1.219m BGS
			- 2 3- 4-	BEDROCK See BH Log 18-4022 WTG-27R For Rock Core Data	75.01							

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Droject No. 19 4022

Drill Date: June 3, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 △
 Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=490723 N=5004552

0.55mm Silica Sand

ENGINEERING Project No: 18-4022

Project: Nation Rise Wind Farm

Site Location: Ashburn Road, North Stormont, ON **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation	78.05							
		- 1	SHALEY LIMESTONE, very thinly bedded to laminated, fine grained, horizontal fractures present with some weathering, good quality rock	76.53	1	125.5	83	152	76.53		
		2	SHALEY LIMESTONE, very thinly bedded to laminated, fine grained, horizontal fractures present with some weathering, fair quality rock	75.01	2	103	68	152	75.01		
		_									

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=490723 N=5004552

Sheet: 1 of 1

Drill Date: June 3, 2018

	Projec	t: Na cati	: 18-4022 tion Rise Wind Farm on: Concession 6-7, No PR	rth St	ormo	nt, O	N		<i>Logged By:</i> S.Khan <i>Compiled By:</i> D.A.Mousseau <i>Reviewed By:</i> E. Giles
	5	SUB	SURFACE PROFILE		S	SAMF	PLE		Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) A 42 62 62 42 64 6
		0-	Geodetic Ground Elevation SAND (SW), fine to medium grained, trace gravel, oxidated, light brown, dry Joppo	73.63	1	SS	58	9	a 8 8
		1–	brown, dry, loose SAND AND GRAVEL (SW), fine,fragmented rocks, cobbles, oxidated, light brown,	72.11	2	SS	71	43	
		2-	Advised, light brown, dry, dense SAND (SW), fine grained, some clay, trace gravel, brown to	71.35	3	SS	54	14	6
			Grey, moist, compact, TILL SILTY TILL (ML), trace gravel, grey, moist,	70.58	4	SS	63	6	
	 X X X X X X Y Y Y Y Y X X X X X X Y Y Y Y X X X X X X Y Y Y Y X X X X X X X Y Y Y Y X X X X X X X Y Y Y Y X X X X X X X Y Y Y Y X X X X X X 	-	SILT AND GRAVEL TILL (ML), angular rocks, grey, wet,		5	SS	67	18	•
			compact	69.06	6	SS	42	12	
		5-	sandy, SILTY TILL (ML), fine grained, grey, wet, compact				72		Water @ 5.05m BGS
		6-		67.53					
		-	SILTY TILL (ML) with		7	SS	29	30	- 11
	Y Y Y Y Y (A A A A A Y Y Y Y (A A A A A Y Y Y Y (A A A A A Y Y Y Y Y (A A A A A Y Y Y Y Y (A A A A A Y Y Y Y Y (A A A A A Y Y Y Y Y (A A A A A Y Y Y Y Y (A A A A A Y Y Y Y Y (A A A A A Y Y Y Y Y (A A A A A Y Y Y Y Y (A A A A A Y Y Y Y Y (A A A A A Y Y Y Y Y (A A A A A Y Y Y Y Y (A A A A A Y Y Y Y Y (A A A A A Y Y Y Y (A A A A A) (A A A A A) (A A A A A A) (A A A A A A) (A A A A A) (A A A A A A) (A A A A A A) (A A A A A) (A A A A A) (A A A A A A) (A A A A A A A) (A A A A A A A) (A A A A A A) (A A A A A A A A) (A A A A A A A A A) (A A A A A A A A A) (A A A A A A A A A A A A A A A) (A A A A A A A A A A A A A A A A A A A	-	gravel, grey, wet, dense	66.01					
		/8—	/	65.81	8	SS	33	100+	
					0	alo Tvo	_		

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Bentonite 7

2018-07-05

0.55mm Silica Sand

Drill Date: June 3, 2018

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=492449 N=5003929

Logged By: S.Khan

Pr Si	oject	: Na c <i>ati</i> o	18-4022 tion Rise Wind Farm on: Concession 6-7, Not R	rth Sto	ormo	nt, O	N		Compiled By: D.A.Mousseau Reviewed By: E. Giles
	S	UBS	SURFACE PROFILE		ę	SAMF	PLE		Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ ☆ <
		9— - 10—	SILTY TILL (ML), some SAND, grey, wet, very dense SAND (SW), trace GRgravel trace plastic fines, grey, dry, very dense SAND (SW), trace gravel, trace plastic fines, grey, wet, very dense GRAVELLY SAND TILL (SG), some clay, fragmented rocks, angular rocks, grey, wet, very dense BEDROCK See BH Log 18-4022 WTG-28R For Rock Core Data	64.49 62.96 62.60 58.43	9	SS		100+	
		- 16-	End of Borehole						

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Bentonite + Cuttings

Drill Date: June 3, 2018

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=492449 N=5003929

Bentonite + Cuttings

ENGINEERING Project No: 18-4022 Project: Nation Rise Wind Farm

Project: Nation Rise Wind Farm Site Location: Concession 6-7, North Stormont, ON *Client:* EDPR

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length(cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
0.000		0-	Geodetic Rock Elevation 62	.60							
		-	LIMESTONE, grey, white layer, weathered, vertical, horizontal & angular fractures, very thinly bedded to laminated, fair quality rock	.31	1	129	65	129	61.31		
		- 2—	LIMESTONE, grey, slightly weathered, horizontal & angular fractures, very thinly bedded to laminated, excellent quality rock	.79	2	152	93	152	59.79		
		3	LIMESTONE, grey, horizontal fractures, many vertical fractures, very thinly bedded to laminated, angular fractures, poor quality rock		3	137	30	137	58.43		

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=492449 N=5003929

Sheet: 1 of 1

Drill Date: June 4, 2018

Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: Ashburn Road, North Stormont, ON Client: EDPR SUBSURFACE PROFILE SAMPLE Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 ∆2 21 Sample Number Strata Plot (m) Recovery (%) Elevation (m) Sample Type Blows / 0.3m DESCRIPTION Ē **Standard Penetration Resistance** Water Content Data Depth (0 Blows / 0.3m Nell (%) 10 20 30 40 50 60 70 80 90 20 40 60 80 Geodetic Ground Elevation 74.10 0 Fine SILT, trace clay 12 SS 58 5 1 φ TOPSOIL, trace organics, brown to red, 73.34 firm, dry to moist 1 2 SS 92 10 SILT (ML), trace clay, transitioning to fine Sandy silt, light brown to brown, bedding present 16 3 SS 83 10 2 in sandy silt, some oxidation, stiff, 19 5 4 SS 75 @2.38 transitioning to SILT (ML) trace clay 71.05 3 trace sand 5 SS 54 1 4 22 6 SS 88 13 SANDY SILTY TILL 5 (SG), trace clay, fine to coarse grained, brown, very loose to compact, moist 6 7 SS 58 16 7

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

Remarks

Grain Size (%)

Gr Sa Si Cl

0.0 6.3 91.7 2.0

Water Encountered @

4.57m BGS

Bentonite + Cuttings

Bentonite

2018-07-20

Г

55mm Silica Sand

8

9

Drilled By: Marathon Drilling

loose

SANDY SILTY TILL (SG), trace clay fine grained, brown, wet,

Drill Method: HSA / SS

Drill Date: June 3, 2018

Sample Type AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ - Rock Core - Water Content W WL- Liquid Limit WP- Plastic Limit \bigtriangleup - Field Vane

66.41

64.96

8

9

SS 56 7

SS 63 18

> w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

> > W

WP

Datum: Ground Surface

Location: UTM 18T E=492423 N=5005472

Sheet: 1 of 2

22

14

WL

	S	UBS	SURFACE PROFILE		5	SAMF	PLE	1	ŗ			_										Rema	rks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	 Stand	0 <u>9</u> lard	92 Pene Blow	etratio	152 on Re 0.3m	120 esist	ance	△ ⊃ ♥		Con (% 40)	Data 80			ze (%) Si C
		10-	SANDY SILTY TILL (SG) AND (SW), medium to coarse grained, trace gravel, brown, wet, compact	63.43																			
00		11–	SANDY SILTY TILL (SG), fine grained, trace gravel, some sand,		10	ss	67	17															
		- 12—	medium grained, throughout, brown, wet,	61.91																			
Noc 200 200 200 200 200 200 200 200 200 20		_	SAND & GRAVEL		11	ss	50	44			þ					6					50.5	5 49.2	2 0.3
200 200 200 200 200 200 200 200 200 200		13-	(GW), medium to coarse grained, dark grey / brown, wet, dense to very dense																				
		14—		59.78	12	SS	25	50+				9				8	}						
00000000000000000000000000000000000000		- 15																					
		16—	BEDROCK																				
		- 17—	See BH Log 18-4022 WTG-29R For Rock Core Data																				
		- 18—	End of Borehole	56.12																			

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: June 3, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 △
 Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=492423 N=5005472

Site Location: Ashburn Road, North Stormont, ON

Client: EDPR

Bentonite + Cuttings

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	IPLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
920209	ri r	0-	Geodetic Rock Elevation	59.78							
		_	BOULDER (SANDSTONE) on top of SHALEY LIMESTONE bedrock ,weathered rock at top of bedrock, fine grained / laminated, good quality rock	58.97	1	81	81	81	58.97		
0000											
ေလ လူလူလူလူလူလူလူလူလူလူလူလူလူလူလူလူလူလူလ		1— 	SHLEY LIMESTONE, grey / black, vertical fracturing present, very thinly bedded to laminated, fine grained rock, fair quality rock	57.63	2	132	56	134.5	57.63		
00000				07.00					57.05		
		3-	SHALEY LIMESTONE, grey / black, vertical fracturing present, very thinly bedded to laminated, fine grained rock, some weathering present at horizontal fractures, excellent quality rock	56.13	3	150	98	150	56.13		
		4-									

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Drill Date: June 4, 2018

 Sample Type

 AS - Auger Sample

 SS - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS - Block Sample

 NQ- Rock Core

 W - Water Content

 WL.Liquid Limit

 WP - Plastic Content

 △ - Unconfined Compressive

 Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=492423 N=5005472

	S	UBS	SURFACE PROFILE	SAMPLE						Remarks	
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	○ Blows / 0.3m ○ ●	Vater Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		0-	Geodetic Ground Elevation	73.12							
		-	CLAYEY TOPSOIL, trace ORGANICS, light brown, firm, moist to dry	72.36	1	SS	33	6	φ	20	
		1–	SILTY CLAY (CI), light brown, firm, moist	71.60	2	SS	100	7	•	31	
		2—	SILTY CLAY (CI), light brown, moist, firm		3	SS	100	6			Water @ 1.66m BGS
		-	SILTY CLAY (CI), some sand, light brown to light grey, moist to wet , very	70.74	4	SS	83	20		2 2	
		3–	stiff CLAYEY SILT TILL (ML), trace GRAVEL, light grey, moist to wet,	10.07	5	SS	46	9			
		4-	stiff	69.01							Auger Refusal on Inferred Bedrock @ 4.11m BGS
		5—									
		6—	BEDROCK See BH Log 18-4022 WTG-32R For Rock Core Data								
		7—	End of Borehole	65.87							

Project No: 18-4022

Logged By: S.deBortoli Compiled By: D A Mousseau

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 29, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W
 Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge Field Vane

- △ Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=488724 N=5000105

Client: EDPR

Bentonite 7

0.55mm Silica Sand

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	SUBSURFACE PROFILE						PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		- 0 -		69.01							
-			SHALEY LIMESTONE, grey / black, fine grained, laminated weathered at top of run, horizontal fractures with some weathering, good quality rock	8.81	1	20	85	20	<u>68.81</u>		
		1-	SHALEY LIMESTONE, grey / black, very thinly bedded to laminated, some weathering present at horizontal fractures, good quality rock	67.49	2	129	76	132	67.49		
		-	SHALEY LIMESTONE, grey / black, very thinly bedded to laminated, some weathering present at horizontal fractures, some vertical fractures present, excellent quality rock	5.87	3	158	90	162	65.87		
			End of Rock Core								

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=488724 N=5000105

Sheet: 1 of 1

Drill Date: May 29, 2018

	Pr Si	oject:	Na Na	18-4022 tion Rise Wind Farm on: Concession 4-5, No R	rth Sto	ormo	nt, O	N		<i>Logged By:</i> S.deBortoli <i>Compiled By:</i> D.A.Mousseau <i>Reviewed By:</i> E. Giles
ľ		S	UBS	SURFACE PROFILE		S	SAMF	PLE		Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ ☆ Grain Size (%) Grain Size (%) Grain Size (%) Gr Sa Si Cl ∴
	~ ~ ~		0-	Geodetic Ground Elevation	73.20					
		17171717 17171717	, -	CLAYEY TOPSOIL, trace ORGANICS, light brown, moist to dry, firm	72.44	1	SS	29	5	φ _18
	¥.		1–			2	SS	83	4	Water at 1.47m BGS
			2-	SILTY CLAY (CI), light brown, moist, soft to very soft		3	ss	100	1	56
			- 3-		70.15					67 69 Water encountered
			_	SILTY TILL (ML), some gravel, light grey, moist to wet, firm		4	SS	50	5	¢ 13 during drilling @ 3.05m
		Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	4-		68.63					
	•	Y Y Y Y Y Y V A A A A A A A Y Y Y Y Y V A A A A A A Y Y Y Y Y V A A A A A A Y Y Y Y Y V A A A A A A Y Y Y Y Y V A A A A A A Y Y Y Y Y Y V A A A A A A Y Y Y Y Y Y V A A A A A A A	5-	SILT TILL (ML), trace clay, some gravel, trace sand, light grey, moist to		5	SS	50	3	φ
			6-	wet, soft	67.10					
			- 7–	Sandy GRAVELLY TILL (SG), trace silt, trace clay, wet, dark brown, loose		6	SS	25	6	 ♣ ₽ ₽
Survive States of States	0.000		8-		65.58	7	SS	63	15	

Drilled By: Marathon Drilling

Drill Method: HSA / SS

2018-07-20

Bentonite 7

0.55mm Silica Sand

Bentonite + Cuttings

Drill Date: May 31, 2018

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=490084 N=5000515

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: Concession 4-5, North Stormont, ON **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	URFACE PROFILE		SAMPLE					Remarks		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 公	Grain Size (%) Gr Sa Si Cl
		- 9_	SILTY TILL (ML), trace gravel, light grey, wet / moist, dense SANDY GRAVELLY TILL (SG), trace plastic fines, black, wet, very dense BEDROCK BEDROCK See BH Log 18-4022 WTG-35R For Rock Core Data End of Borehole	e 62.54 61.72 57.90	8 9	SS	58	 ₩ ₩ 48 50+ 		Gr Sa Si Cl

Drilled By: Marathon Drilling

Bentonite + Cuttings

- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum: Ground Surface

Location: UTM 18T E=490084 N=5000515

Drill Date: May 31, 2018

Drill Method: HSA / SS

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample


 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane

Bentonite + Cuttings

ENGINEERING Project No: 18-4022

Project: Nation Rise Wind Farm

Site Location: Concession 4-5, North Stormont, ON Client: EDPR

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

SUBSURFACE PROFILE						SAM	IPLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
000000	ri r	0-	Geodetic Rock Elevation	61.72							
္မေရး ေရွ႕ေရွ႕ေရး ေရွ႕ေရး လူရင္က လူရင္ ေရွ႕ေရး လူရင္ လူ လူရင္ လူရင္ ေရွ႕ေရး လူရင္ လ		_	SHALEY LIMESTONE, grey / black, vertical & horizontal fracturing present with significant weathering at discontinuities, fine grained, laminated, poor quality rock	60.87	1	85	31	85	60.87		
		1—									
0.9%0.5%0.9%0.9% 0.9%0.5%0.9%0.9% 6.0%0.0%0.0%0.0% 6.0%0.0%0.0%0.0%0.0%0.0%0.0%0.0%0.0%0.0%		_	SHALEY LIMESTONE, grey / black, laminated with some weathering present at horizontal fractures, good quality rock		2	152	86	152			
		2-		59.35					59.35		
Coad Coad Coad Coad Coad Coad Coad Coad			SHALEY LIMESTONE, grey / black, vertical & horizontal fracturing present with some weathering present at horizontal fractures, discontinuities occurring along shale interfaces, fine grained, very thinly bedded to laminated, good quality rock		3	145	83	145			
2008°			End of Rock Core	57.90					57.90		
		4-	ENU UL KUCK CULE								

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Drill Date: May 31, 2018

 Sample Type

 AS - Auger Sample

 SS - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS - Block Sample

 NQ- Rock Core

 W - Water Content

 WL_Liquid Limit

 WP - Plastic Content

 △ - Unconfined Compressive

 Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=490084 N=5000515

Logged By: S.deBortoli

	Pı Si	oject	: Na c <i>ati</i> e	18-4022 tion Rise Wind Farm o <i>n:</i> Concession 4-5, Not PR	rth Sto	ormoi	nt, O	N		Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles
		S	UBS	SURFACE PROFILE		S	SAMF	PLE		Undrained Shear Strength (Cu, kPa)
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Standard Penetration Resistance Water Content Data Grain Size (%) 0 20 30 40 50 60 70 80 90 20 40 60 80
		~ ~	0-	Geodetic Ground Elevation	73.01					
			_	Clayey TOPSOIL, trace ORGANICS, dark brown, moist, soft	72.25	1	SS	29	4	φ 2 5
			1-		-	2	SS	83	2	
17-1	-		2-			3	SS	100	wн	5 0
710-017			- 3-							ے 27 ے ³ 1
а	•			SILTY CLAY (CI), very sticky, brown to dark grey, moist, soft to very soft	-	4	SS	50	wн	~ 73
Bentonite			4-							333 33
DL			5—		-	5	SS	50	wн	▶
U.Somm Silica Sand			- 6-		66.91					_ ⁴²
mcc.u			-0		00.91	6	SS	25	1	1 5
			7-	SILTY TILL (ML), some						
	97009 00000 00000 00000		8-	clay, trace gravel, dark grey, wet, very compact		7	SS	63	15	

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: June 1, 2018

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 △
 - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP W WL

Datum: Ground Surface

Location: UTM 18T E=490750 N=5001244

Logged By: S.deBortoli

Project No: 18-4022 Compiled By: D.A.Mousseau **Project:** Nation Rise Wind Farm Reviewed By: E. Giles Site Location: Concession 4-5, North Stormont, ON **Client: EDPR** SUBSURFACE PROFILE SAMPLE Remarks Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 Δ ∆2 Sample Number Strata Plot (m) Elevation (m) Recovery (%) Sample Type Blows / 0.3m DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 Blows / 0.3m Nell (%) Gr Sa Si Cl 10 20 30 40 50 60 70 80 90 20 40 60 80 9 63.87 12 8 SS 58 38 Silty TILL (ML), some to 10trace clay, trace to some gravel, dark grey, wet, dense to very dense 9 58 50+ 9 SS 11 61.74 12 BEDROCK 13 See BH Log 18-4022 WTG-38R For Rock Core Data 14 58.54 End of Borehole 15 16

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Bentonite + Cuttings

Drill Date: June 1, 2018

- Sample Type
- AS Auger Sample SS - Split Spoon
- TWS Thin Walled Shelby Tube
- BS Block Sample NQ - Rock Core
- W Water Content
- WL- Liquid Limit WP- Plastic Limit
- WP- Plastic Lim △ - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

W

WL

WP

Datum: Ground Surface

Location: UTM 18T E=490750 N=5001244

Bentonite + Cuttings

ENGINEERING Project No: 18-4022 Project: Nation Rise Wind Farm

Project: Nation Rise Wind Farm Site Location: Concession 4-5, North Stormont, ON *Client:* EDPR

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	SUBS	SURFACE PROFILE		SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
0.000		≠ 0-	Geodetic Rock Elevation 61.74							
		- 1-	SHALEY LIMESTONE, grey / black, very weathered section at top of run, fine grained, thinly laminated to laminated, some weathering at horizontal discontinuities, fair quality rock 60.37	1	141	73	137	60.37		
		2-	SHALEY LIMESTONE, grey / black, very thinly bedded to laminated, fine grained, some weathering at discontinuities, horizontal natural fractures, good quality rock	2	157.5	81	157.5	58.79		
2000 2000 2000 2000		2	58.79 SHALEY LIMESTONE, grey / black, laminated, fine	3	25	82	25			
		- 4-	grained, no weathering, mechanical fracture present, good quality rock End of Rock Core					58.54		

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=490750 N=5001244

Sheet: 1 of 1

Drill Date: June 2, 2018

	Pi Si	roject	: Na c <i>ati</i> e	: 18-4022 tion Rise Wind Farm o <i>n:</i> Concession 4-5, No PR	rth Ste	ormo	nt, O	N		<i>Logged By:</i> S.deBortoli <i>Compiled By:</i> D.A.Mousseau <i>Reviewed By:</i> E. Giles	
		S	UBS	SURFACE PROFILE		9	SAMI	PLE		Remarks	
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) ^(A) : ::::::::::::::::::::::::::::::::::	
			0-	Geodetic Ground Elevation CLAYEY TOPSOIL, trace ORGANICS, brown, moist to dry, soft	73.92 73.16	1	SS	79	3	21	
2018-07-06	-		1–			2	SS	100	6	Φ	
2018			- 2-	SILTY CLAY (CI), trace to some silt, light brown, moist, firm		3	SS	79	4		GS
			- 3-		70.87					ے دوج دوج	
Bentonite	•		-	SILTY CLAY (CI), dark grey, wet, soft		4	SS	58	3	27	
Bent			+ -		69.35						
			5-	CLAYEY SILT TILL (ML), trace gravel, dark grey, wet, very dense	68.97	5	SS	100	100+)+ Inferred Bedrock @ 4.95m BGS	D
			6-								
0.55mm Silica Sand			- 7–	BEDROCK							
0.55mm			- 8-	See BH Log 18-4022 WTG-41R For Rock Core Data							
ttings	2000 Son		_ م_	End of Borehole	65.23						
Bentonite + Cuttings	Drilled By: Marathon Drilling						ple Typ Auger S Split Sp - Thin W Block S	ample oon /alled S ample		y Tube w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer UCCation: UTM 18T	ce

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: June 2, 2018

- AS Auger Sample SS Split Spoon TWS Thin Walled Shelby Tube BS Block Sample NQ Rock Core W Water Content WL- Liquid Limit WP- Plastic Limit △ Field Vane

WP

W

WL

1

Location: UTM 18T E=491190 N=5000204

ENGINEERING Project No: 18-4022

TULLOCH

0.55mm Silica Sand

Bentonite + Cuttings

Project: Nation Rise Wind Farm *Site Location:* Concession 4-5, North Stormont, ON *Client:* EDPR

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	SUBSURFACE PROFILE				SAM	PLE		(E		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation	68.97							
		-	SHALEY LIMESTONE, grey / black, very thinly bedded to laminated, fine grained weathering present & horizontal fractures, weathered broken zone 100mm @ top of run, good quality rock	68.18	1	73	76	79	68.18		
		1— - 2—	SHALEY LIMESTONE, grey / black, very thinly bedded to laminated, significant weathering @ horizontal fractures, good quality rock	66.66	2	152	79	152	66.66		
		- 3-	SHALEY LIMESTONE, grey / black, laminated, minimal weathering, horizontal fractures, some vertical fractures, good quality rock	65.11	3	149	87	155	65.11	_م 70.0	
02220			End of Rock Core						00.11		
<u> </u>		4									

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Drill Date: June 2, 2018

 Sample Type

 AS - Auger Sample

 SS - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS - Block Sample

 NQ- Rock Core

 W - Water Content

 WL. Liquid Limit

 WP. Plastic Content

 △ - Unconfined Compressive

 Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=491190 N=5000204

Logged By: S.Khan

	С	Client:	EDP	on: Concession 4-5, No PR SURFACE PROFILE			SAMF					Demode
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 公 02 52 02 5	Water Content Data (%) 20 40 60 80	Remarks Grain Size (%) Gr Sa Si Cl
Γ			0-	Geodetic Ground Elevation	86.79							
te	•		-	SAND (SP), medium grained, some to trace GRAVEL, brown, dry, compact		1	SS	79	12		2 5	
Bentonite			1—	SANDY SILT CLAY (ML), oxidated, brown, dry, very stiff	86.03	2	SS	100	27		2 3	
2018-07-05			- 2-	SAND & GRAVEL (GW), angular rocks,	85.27	3	SS	79	55			Water @ 1.56m BGS
				fragmented rocks, cobbles, browm, dry, very dense to dense		4	SS	58	41		6	
			3–	SILTY SAND to Sandy SILT (SM), trace clay, trace gravel, olive / grey,	83.74	5	SS	100	52	→ →		
				dry, very dense								
			4—		82.68							
			-	CLAYEY SILT to Silty SAND (ML), grey, dry, hard	82.22	6	ss	83	44		1 3	
d _			5-			7	SS	29	21			
0.55mm Silica Sand		H H	_	SILTY CLAY (CL), dark grey, moist, very stiff								

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 30, 2018

- Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS Thin Walled Shelby Tube
 BS

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 △
 - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=0494277 N=5001837

S	UBS	SURFACE PROFILE			SAMI	PLE		Remarks
Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 公
HHHH!	6—		80.69					
	- 7—	SAND & GRAVEL (GW), some to trace clay, dark grey, wet, dense		8	SS	42	35	•17
	- 8—	SAND (SW) trace clay, trace gravel, trace plastic fines, grey, dry, very dense	79.33 79.17	9	SS	100	80	2 4 9.1 81.4 9.5
	9 - 10	BEDROCK See BH Log 18-4022 T20R For Rock Core Data	76.36					
	HHH H Strata Plot (m)		6- SAND & GRAVEL (GW), some to trace clay, dark grey, wet, dense SAND (SW) trace clay, trace gravel, trace plastic fines, grey, dry, very dense 9- 8- BEDROCK See BH Log 18-4022 T20R For Rock Core Data	(iii) told erearts (iii) tuited ad DESCRIPTION (iii) tuited ad 6- 80.69 6- 80.69 6- 80.69 7- SAND & GRAVEL (GW), some to trace clay, dark grey, wet, dense 79.33 7- SAND (SW) trace clay, trace gravel, trace plastic fines, grey, dry, very dense 79.17 9- BEDROCK See BH Log 18-4022 T20R For Rock Core Data 1	Image: Normal system Image: Normal system <th< td=""><td>Image: Description Image: De</td><td>Image: Construction of the second second</td><td>Image: Construction of the second second</td></th<>	Image: Description Image: De	Image: Construction of the second	Image: Construction of the second

Logged By: S.Khan Compiled Ry: D & Mousseau

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Project No: 18-4022

Drill Date: May 30, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

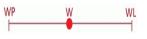
 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W Water Content

 WL- Liquid Limit


 WP- Plastic Limit

 △
 Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum: Ground Surface

Location: UTM 18T

Logged By: S.Khan Compiled By: D.A.Mousseau **Reviewed By: E. Giles**

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
0.4.4.5-0	ИИ	0-	Geodetic Rock Elevation	79.17							
2000 2000 2000 2000 2000 2000 2000 200		-	LIMESTONE, grey, weathered, horizontal & angular fractures, very poor quality rock	78.64	1	53	19	53	78.64		
		1	LIMESTONE, grey, slightly weathered, horizontal & angular fractures, laminated with light grey bedding, good quality rock	77.12	2	152	83	152	77.12		
		3-	LIMESTONE, grey, slightly weathered, horizontal & angular fractures, laminated with dark grey bedding, excellent quality rock	75.60	3	152	95	152	75.60		
		4-									

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=0494277 N=5001837

Sheet: 1 of 1

Drill Date: May 30, 2018

TULLOCH ENGINEERING

Client: EDPR

Bentonite + Cuttings

Project No: 18-4022

Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: Concession 3-4 Road, North Stormont, ON **Client: EDPR** SUBSURFACE PROFILE SAMPLE Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 ۲5 ۲ Sample Number Strata Plot (m) Recovery (%) Elevation (m) Sample Type Blows / 0.3m DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 Blows / 0.3m Nell (%) Gr Sa Si Cl 10 20 30 40 50 60 70 80 90 20 40 60 80 69.37 Geodetic Ground Elevation 0 CLAYEY TOPSOIL, 20 trace sand, trace 1 SS 71 8 organics, brown, moist, firm 68.61 1 2 SS 83 6 43 22 0.0 0.9 36.4 62.7 3 SS 79 3 2 _62 SILTY CLAY (CI), trace to some silt, light brown _50 to grey, moist, firm to soft 3 32 5 SS 100 2 <u>42</u> 4 _34 64.80 6 TWS 100 5 SILTY TILL (MK),some sand, trace gravel, grey, moist, very dense 6 63.13 100+ 7 Auger Refusal on 9 Inferred Bedrock @ 6.24m BGS

+ Cuttings Bentonite

0.55mm Silica Sand

2018-07-07

Bentonite

Drilled By: Marathon Drilling

Drill Method: HSA / SS

7

Drill Date: May 21, 2018

- Sample Type AS - Auger Sample SS - Split Spoon
- TWS Thin Walled Shelby Tube BS - Block Sample
- NQ Rock Core W - Water Content WL- Liquid Limit
- WP- Plastic Limit \bigtriangleup - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

Datum: Ground Surface

Location: UTM 18T E=487121 N=4996303

Sheet: 1 of 2

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

Remarks

Logged By: S.deBortoli *Compiled By:* D.A.Mousseau

Reviewed By: E. Giles

Client: EDPR SUBSURFACE PROFILE SAMPLE Remarks Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 Δ ∆2 21 Sample Number Strata Plot (m) Recovery (%) Elevation (m) Sample Type Blows / 0.3m DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 0 Blows / 0.3m Nell (%) Gr Sa Si Cl 10 20 30 40 50 60 70 80 90 20 40 60 80 8 9 BEDROCK See BH Log 18-4022 T20R 10 For Rock Core Data 11 57.44 12 End of Borehole 13 14

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Project No: 18-4022

Bentonite + Cuttings

Project: Nation Rise Wind Farm

Site Location: Concession 3-4 Road, North Stormont, ON

Drill Date: May 21, 2018

Sample Type

- AS Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube
- BS Block Sample
- NQ Rock Core W - Water Content WL- Liquid Limit
- WP- Plastic Limit
- \bigtriangleup Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum: Ground Surface

Location: UTM 18T

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: Concession 3-4 Road, North Stormont, ON Client: EDPR

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation 6	63.13							
		- 1-	SHALEY LIMESTONE, grey / black, fine grained, extremely weathered, thinly laminated to laminated, broken zones at top & bottom of run	62.12	1	76	16	101.5	62.12		
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- 2—	SHALEY LIMESTONE, grey / black, fine grained, broken & weathered sections throughout run, voids were hit throughout run	60.54	2	74	7	157.5	60.54		
		3— - 4—	SHALEY LIMESTONE, grey / black, fine grained, very thinly bedded to laminated, broken zone at top of run (16cm long) angled & horizontal fractures with some weathering present at discontinuities	58.89	3	165	82	165	58.89		
		5—	SHALEY LIMESTONE, grey / black, fine grained, very thinly bedded to laminated, mechanical fractures, excellent rock	57.44	4	145	100	145	57.44	_م 66.0	
	La C		End of Rock Core								
		6-									
		,									

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Drill Date: May 21, 2018

Bentonite + Cuttings

 Sample Type

 AS - Auger Sample

 SS - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS - Block Sample

 NQ- Rock Core

 W - Water Content

 WL_Liquid Limit

 WP - Plastic Content

 △ - Unconfined Compressive

 Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=487121 N=4996303

	Pi Si	roject:	: Na c <i>ati</i> e	18-4022 tion Rise Wind Farm on: Concession 1-2 Roa 'R	ıd, No	orth St	torm	ont,	ON	Co	ogged By: S.deE ompiled By: D.A eviewed By: E. C	.Mousseau
		S	UBS	SURFACE PROFILE		S	SAMF	۶LE				Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) ^Δ <u>42</u> <u>12</u> <u>12</u> <u>12</u> <u>12</u> <u>12</u> <u>12</u> <u>12</u> <u>1</u>	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		\sim	0-	Geodetic Ground Elevation	86.25							
nite _	•	$l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l$	_	CLAYEY TOPSOIL, trace ORGANICS with sand ,some gravel, reddish brown, moist to dry, very stiff	85.49	1	SS	54	15	Q	_ 16	
Bentonite		V V V V V V A A A A A A A V V V V V V A A A A A A A V V V V V V A A A A A A A V V V V V V A A A A A A A V V V V V V A A A A A A A V V V V V V A A A A A A A V V V V V V V A A A A A A A A V V V V V V V A A A A A A A A V V V V V V V A A A A A A A A V V V V V V V A A A A A A A A V V V V V V V A A A A A A A A A V V V V V V V A A A A A A A A A V V V V V V V A A A A A A A A A A V V V V V V V A A A A A A A A A A A V V V V V V V V A A A A A A A A A A A A V V V V V V V V V A A A A A A A A A A A A A A A A A A A	1—	SILTY TILL (ML), trace sand, trace, gravel, light brown, moist to dry, very dense	84.73	2	SS	88	70			
2018-07-06		**************************************	2-	GRAVEL (GW) & fractured rocks, some sand and clay, light brown / grey, dry, very dense	83.97	3	SS	25	50+	•	8	
2018		4 0 1.2 9 0 4 9 7 9 9 5 4 4 4 4 4 9 7 9 9 5 4 4 4 4 4 4 9 7 7 9 5 4 4 4 4 4 4 9 7 7 9 5 4 4 4 4 4 4 9 7 7 9 5 4 4 4 4 4 4 9 7 7 9 5 4 4 4 4 4 4 9 7 7 9 4 5 9 7 7 9 4				4	SS	46	50+	Φ		
			-	SILTY TILL (ML), trace to some gravel, light brown, moist to dry, very dense		5	SS	25	50+	Φ	6	
0.55mm Silica Sand			4-		81.68							
0.55mm S			5—			6	SS	29	50+		8	
			6-	SILTY TILL (ML), some gravel, light grey, moist to dry, very dense								

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 19, 2018

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 △
 - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum: Ground Surface

Location: UTM 18T E=487994 N=4993166

Logged By: S.deBortoli Compiled By: D.A.Mousseau

Reviewed By: E. Giles

Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: Concession 1-2 Road, North Stormont, ON **Client: EDPR**

		S	UBS	SURFACE PROFILE		9	SAMF	PLE		Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) Standard Penetration Resistance Blows / 0.3m
Bentonite + Cuttings 7			7- - 8- - 9- - 10- - 11- - 12-	BEDROCK See BH Log 18-4022 T20R For Rock Core Data	79.70	7	SS	88	79	10 20 30 40 50 60 70 80 90 20 40 60 80 40 cm

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 19, 2018

- Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS
 - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 V
 - Field Vane
- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum: Ground Surface

Location: UTM 18T

Project No: 18-4022

Bentonite + Cuttings

Project: Nation Rise Wind Farm Site Location: Concession 1-2 Road, North Stormont, ON Client: EDPR

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length(cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
0.000		0-	Geodetic Rock Elevation 7	79.70							
450,450,450,450,450,450,450,450,450,450,		_	SHALEY LIMESTONE, grey / black, fine grained, thinly laminated to laminated, broken sections at top of run with weathering at discontinuities / (horizontal) fractures, fair quality rock	78.89	1	81	67	81	78.89		
		1— - 2—	SHALEY LIMESTONE, grey / black, fine grained, very thinly bedded to laminated, some weathering present at discontinuities, mechanical fractures occuring along weaker shale strata (horizontal fractures), excellent rock	77.37	2	152	95	152	77.37		
		- 3-	SHALEY LIMESTONE, grey / black, very thinly bedded to laminated, minimal weathering, mechanical breaks in soft shale layers (horizontal breaks) excellent rock	75.82	3	155	93	155	75.82		
			End of Rock Core	J.02					15.02		
		4-									

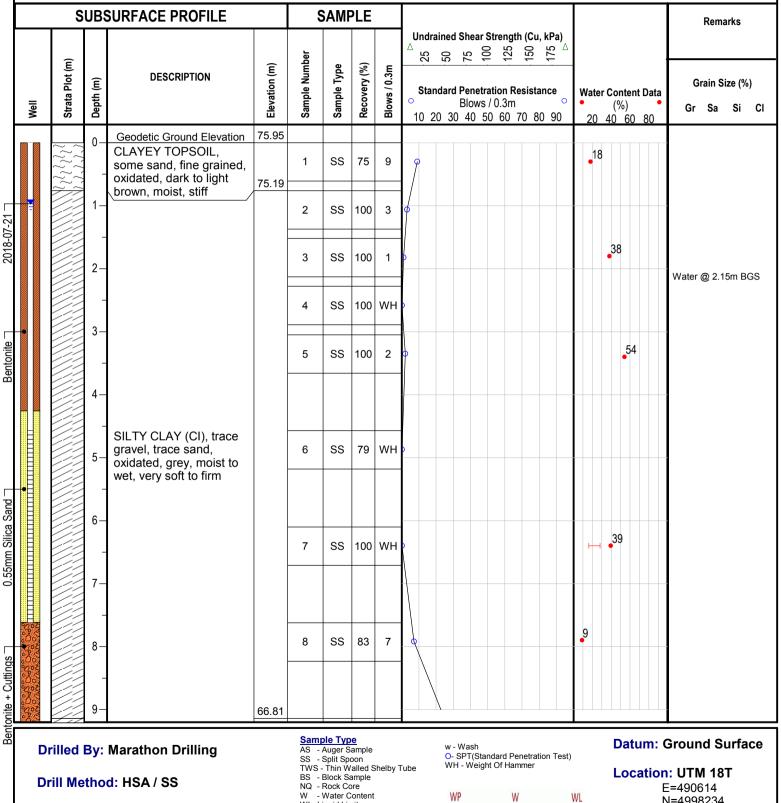
Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL . Liquid Limit WP. Plastic Content △ - Unconfined Compressive Strength w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface


Location: UTM 18T E=487994 N=4993166

Sheet: 1 of 1

Drill Date: May 20, 2018

Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

Drill Date: May 20, 2018

WL- Liquid Limit WP- Plastic Limit △ - Field Vane

WP

N=4998234

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

		S	UBS	SURFACE PROFILE		S	SAMF	۲E			Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ ½ ½ ½ ½ ½ ½ ½ ½ ↓	Grain Size (%) Gr Sa Si Cl
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			SILTY TILL (ML), trace		9	SS	75	29	9	
	0.00		10-	gravel, grey, moist, compact	65.29						
	50000 0000 0000 0000 0000 0000 0000 00		11–	SILTY TILL (ML), grey,	00.20	10	SS	13	27		
			- 12—	wet, compact	63.76						
Bentonite + Cuttings	50050045045 045045045 0450465045		- 13—	SANDY, GRAVELLY TILL (SG) trace plastic fines, cobbles, grey, wet to moist, very dense	63.15	11	SS	75	85		46.4 51.8 1.8
Be			- 14—								
	20000000000000000000000000000000000000		- 15— -	BEDROCK See BH Log 18-4022 WTG-47R For Rock Core Data							
	0.000		16—	End of Borehole	59.55						
			17—								
			18—								

Drilled By: Marathon Drilling

- Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS
 - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 V
 - Field Vane

- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=490614 N=4998234

Sheet: 2 of 2

Drill Date: May 20, 2018

Drill Method: HSA / SS

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

SUBSURFACE PROFILE SAMPLE Run Depth Elevation (m) (cm) Sample Number Strata Plot (m) Remarks Elevation (m) Run Length DESCRIPTION Ē (cm) (%) **Unconfined Compressive Strength** Depth (RQD TCR ٨ (MPa) Nell 10 20 30 40 50 60 70 80 90 100110120130140150 63.15 Geodetic Rock Elevation 0 LIMESTONE, grey, weathered, laminated, horizontal fractures, vertical 1 56 18 56 fractures, very poor quality rock 62.59 62.59 1 LIMESTONE, grey, slightly weathered, horizontal fractures, laminated with 152 72 152 2 thin black bedding, fair quality rock 2-61.07 61.07 LIMESTONE, grey, very slightly weathered, laminated, horizontal 3 152 80 152 fractures, good quality rock 3. 59.55 59.55 End of Rock Core

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type AS - Auger Sample

SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=490614 N=4998234

Sheet: 1 of 1

Drill Date: May 22, 2018

TULLOCH ENGINEERING

Client: EDPR

Bentonite + Cuttings

Project No: 18-4022

Project: Nation Rise Wind Farm

	P S	roject	Na Na	tion Rise Wind Farm on: County Road 43, No PR	orth St	ormo	ont, C	N		<i>Compiled By:</i> D.A.Mousseau <i>Reviewed By:</i> E. Giles
		S	UBS	SURFACE PROFILE		ę	SAMF	PLE		Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) A B B C<
			0-	Geodetic Ground Elevation	82.32					
Bentonite			_	SAND (SW), trace gravel, oxidated, brown, organic, loose	81.72	1	ss	42	9	φ
Be			1—	SILTY CLAY (CL), trace gravel, oxidated, brown, organics, compact	81.32	2	SS	25	12	Spoon Refusal on Inferred Bedrock @1.07m
0.55mm Silica Sand 7 2018-07-06			- 2 3- 4- 5-	BEDROCK See BH Log 18-4022 WTG-48R For Rock Core Data	77.19					BGS Water @ 1.84m BGS

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 △
 Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=491382 N=4997145

Sheet: 1 of 1

Project No: 18-4022

Logged By: S.Khan Compiled By: D & Mousseau

Site Location: Country Road 43, North Stormont, ON

TULLOCH ENGINEERING

0.55mm Silica Sand ⁻

Project No: 18-4022

Logged By: S.Khan Compiled By: D.A.Mousseau **Reviewed By: E. Giles**

Client: EDPR SUBSURFACE PROFILE SAMPLE Run Depth Elevation (m) (cm) Sample Number Strata Plot (m) Remarks Elevation (m) Run Length DESCRIPTION Ē (cm (%) **Unconfined Compressive Strength** Depth (RQD TCR ٨ Nell (MPa) 10 20 30 40 50 60 70 80 90 100110120130140150 81.32 Geodetic Rock Elevation 0 LIMESTONE, grey, weathered, fine grained, 53 laminated, horizontal 1 38 56 fractures, poor quality rock 80.76 80.76 LIMESTONE, grey, slightly weathered, fine grained, laminated, horizontal 2 147 147 50 fractures, fair quality rock 79.29 79.29 2 LIMESTONE, grey, slightly weathered, fine grained, 155 155 laminated , horizontal 3 49 fractures, poor quality rock 3 77.74 77.74 LIMESTONE, grey, weathered, laminated with thin black bedding, fine 4 84 42 84 4 grained, horizontal fractures, poor quality rock 76.90 76.90 End of Rock Core

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type AS - Auger Sample

SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=491382 N=4997145

Sheet: 1 of 1

Drill Date: May 23, 2018

	S	UBS	SURFACE PROFILE		ę	SAM	PLE				Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 公	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		0-	Geodetic Ground Elevation	75.83							
•		_			1	SS	54	9		2 1	
		1—			2	SS	71	32		8	
		2–	grained, gravel, angular,		3	SS	58	27			
			fragmented rocks (cobbles & boulders), brown, dry, loose to dense		4	SS	50	40		•	
					5	SS	25	14	ø		Water @ 3.54m BGS
		4—		71.26							
		5—		, 1.20	6	SS	75	24	Q	9	
		- 6-									

Drill Method: HSA / SS

Drill Date: May 29, 2018

WP

W

WL

- NQ Rock Sample NQ Rock Core W Water Content WL- Liquid Limit WP- Plastic Limit △ Field Vane

E=488444 N=4995522

Sheet: 1 of 2

Project No: 18-4022

Logged By: S.Khan Compiled By: D A Moussoau

	Pi Si	roject	Na Catio	18-4022 tion Rise Wind Farm on: Concession 1-2, Nor R	rth Sto	ormoi	nt, O	N		<i>Logged By:</i> S.Khan <i>Compiled By:</i> D.A.Mousseau <i>Reviewed By:</i> E. Giles
		S	UBS	SURFACE PROFILE		S	SAM	PLE	1	Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) ⁽¹⁾ ⁽²⁾
0.55mm Silica Sand			- 7- 8-	SILTY TILL (ML), some to trace sand and gravel, angular rocks, grey, wet, compact to dense	68.13	7	SS	63	42	7
Bentonite + Cuttings			9- - 10- - 11-	BEDROCK See BH Log 18-4022 T20R For Rock Core Data	63.92					
	ँ		12–	End of Borehole	63.92					

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 29, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 △
 Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum: Ground Surface

Location: UTM 18T

Sheet: 2 of 2

Bentonite + Cuttings

ENGINEERING Project No: 18-4022 **Project:** Nation Rise Wind Farm

Site Location: Concession 1-2, North Stormont, ON **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau **Reviewed By: E. Giles**

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation 6	68.13							
ალი ალი ალი ალი ალი ალი ალი ალი ალი ალი ალი ალი ალი ალი არი ალი ალი ალი ალი ალი ალი ალი ალი ალი ალი ალი ალი ალი ა		- 1-	LIMESTONE, grey, weathered, fine grained, very thinly bedded to laminated, horizontal fractures, fair quality rock	6.94	1	112	66	119	66.94		
		- 2—	LIMESTONE, grey, slightly weathered, very thinly bedded to laminated, horizontal fractures, angular fractures, fair quality rock	55.44	2	145	51	150	65.44		
္ကမ္းေလးေလးေလး ေလးေလးေလး ေလးေလးေလးေလးေလးေလးေလးေလးေလးေလးေလးေလး ေလးေလးေလးေလးေလးေလးေလးေလးေလးေလးေလးေလး		3	LIMESTONE, grey, slightly weathered, very thinly bedded to laminated, horizontal fractures, angular fractures, fair quality rock	53.92	3	152	73	152	63.92		
		_									

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=488444 N=4995522

Sheet: 1 of 1

Drill Date: May 29, 2018

Logged By: S.Khan

Compiled By: D.A.Mousseau **Project:** Nation Rise Wind Farm Reviewed By: E. Giles Site Location: Concession 4-5, North Stormont, ON **Client: EDPR** SUBSURFACE PROFILE SAMPLE Remarks Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 ۲5 ۲ Sample Number Strata Plot (m) Recovery (%) Elevation (m) Sample Type Blows / 0.3m DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 Blows / 0.3m Nell (%) Gr Sa Si Cl 10 20 30 40 50 60 70 80 90 20 40 60 80 69.57 Geodetic Ground Elevation 0 CLAYEY TOPSOIL, 18 SS 75 9 1 some sand, light to dark brown, dry, stiff 68.81 32 1 2 SS 100 4 20108-07-21 3 SS 100 2 Water @ 2.0m BGS 2 40 _56 3 Bentonite 65 100 WH 4 SS 19 SILTY CLAY (CL), trace 4 gravel, light brown to _17 grey, moist to wet, very soft to firm 100 5 5 _33 55mm Silica Sand _31 6 32 6 SS 79 2 7 61.95

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Project No: 18-4022

Drill Date: May 28, 2018

- Sample Type
- AS Auger Sample SS - Split Spoon
- TWS Thin Walled Shelby Tube BS - Block Sample
- NQ Rock Core
- W Water Content
- WL- Liquid Limit
- WP- Plastic Limit △ - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP W WL

Datum: Ground Surface

Location: UTM 18T E=488115 N=4998329

Logged By: S.Khan

	S	UBS	SURFACE PROFILE		5	SAMF	PLE				Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) 4 42 62 42 62 4	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		8-	SANDY GRAVEL LY		7	SS	100	11			
NO 00 000 000 000 000 000 000 000 000 000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 9-	TILL (SG), grey, wet, compact	60.43							
	**************************************	_			8	SS	54	31		8	27.4 71.3 1.3
	6	10-	SANDY GRAVELLY TILL (SG), trace plastic fines, wet to moist, dense to very dense								
	8,8 8,8 8,0 8,0 8,0 8,0000000000	11–		58.50	9	SS	79	100+			
		- 12—									
		-									
		13–	BEDROCK See BH Log 18-4022 WTG-54R								
00000000000000000000000000000000000000		- 14—	For Rock Core Data								
		_		E4 07							
		15—	End of Borehole	54.67							

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 28, 2018

- Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS
 - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 - Field Vane

- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum: Ground Surface

Location: UTM 18T E=488115 N=4998329

ENGINEERING Project No: 18-4022

Project: Nation Rise Wind Farm

Site Location: Concession 4-5, North Stormont, ON Client: EDPR

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	IPLE		(m		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation	58.50							
କର କୁନ୍ଦିର କୁନ୍ଦିର କୁନ୍ଦିର କୁନ୍ଦିର ସହର କୁନ୍ଦିର ସହର କୁନ୍ଦିର କୁନ୍ଦିର କୁନ୍ଦିର ସହର ସହର କୁନ୍ଦିର କୁନ୍ଦିର କୁନ୍ଦିର କୁନ୍ଦିର କୁନ୍ଦି		-	LIMESTONE, grey, weathered, laminated, fine grained, horizontal fractures, angular fractures, poor quality rock	57.71	1	71	35	79	57.71		
0000											
		1— 2—	LIMESTONE, grey, weathered, fine grained, horizontal fractures, angular fractures, laminated with thin black bedding, fair quality rock	56.19	2	152	60	152	56.19		
		3-	LIMESTONE, grey, slightly weathered, fine grained , horizontal fractures, excellent quality rock	54.67	3	152	100	152	54.67		
			End of Rock Core								
		4 —									

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Drill Date: May 28, 2018

Bentonite + Cuttings

 Sample Type

 AS - Auger Sample

 SS - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS - Block Sample

 NQ- Rock Core

 W - Water Content

 WL_Liquid Limit

 WP - Plastic Content

 △ - Unconfined Compressive

 Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=488115 N=4998329

	OR:	SURFACE PROFILE		5	SAMI	PLE				Remarks
Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) ^Δ <u>5</u> <u>5</u> <u>5</u> <u>6</u> <u>5</u> <u>5</u> <u>5</u> <u>6</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> Standard Penetration Resistance ^o Blows / 0.3m ^o 10 20 30 40 50 60 70 80 90	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si (
	0-	Geodetic Ground Elevation	87.29							
	_	CLAYEY TOPSOIL, trace sand, brown to grey, dry to moist, firm	86.53	1	SS	75	6	Q	28	
	1–	SILTY SAND to SANDY SILT TILL (ML), some clay, trace gravel, brown, moist, dense	86.13	2	SS	88	34		27	
	2-	SAND (SW), trace gravel, grey, wet, dense SANDY SILT TILL (ML),		3	ss	100	63			
	-	plastic fines, cobbles and boulders, moist, very dense SILT TILL (ML), trace	84.35	4	ss	88	62		1 5	
	3-	gravel, trace sand, trace plastic fines,cobbles and boulders, grey, moist, very dense								
	1-									
	4-									
	5									
	5	BEDROCK								
	_									
	6-	See BH Log 18-4022 T56R For Rock Core Data								
	-									
	7—		80.32							
	Strata Plot (m)		0 Geodetic Ground Elevation CLAYEY TOPSOIL, trace sand, brown to grey, dry to moist, firm 1 SILTY SAND to SANDY SILT TILL (ML), some clay, trace gravel, brown, moist, dense 2 SAND (SW), trace gravel, grey, wet, dense 2 SANDY SILT TILL (ML), some gravel, trace plastic fines, cobbles and boulders, moist, very dense 3 SILT TILL (ML), trace gravel, trace sand, trace plastic fines, cobbles and boulders, grey, moist, very dense 4 - 5 BEDROCK 6 See BH Log 18-4022 T56R For Rock Core Data	0 Geodetic Ground Elevation 87.29 CLAYEY TOPSOIL, trace sand, brown to grey, dry to moist, firm 86.53 1- SILTY SAND to SANDY SILT TILL (ML), some clay, trace gravel, brown, moist, dense 86.13 2- SAND (SW), trace gravel, grey, wet, dense 85.77 SAND (SW), trace gravel, grey, wet, dense 85.01 2- SANDY SILT TILL (ML), some gravel, trace plastic fines, cobbles and boulders, moist, very dense 84.35 3- SILT TILL (ML), trace gravel, trace sand, trace plastic fines, cobbles and boulders, grey, moist, very dense 84.35 4- - - 5- BEDROCK - 6- See BH Log 18-4022 T56R For Rock Core Data 80.32	0 Geodetic Ground Elevation 87.29 1 CLAYEY TOPSOIL, trace sand, brown to grey, dry to moist, firm 1 86.53 SILTY SAND to SANDY 1 SILT TILL (ML), some clay, trace gravel, brown, moist, dense 2 SAND (SW), trace gravel, grey, wet, dense 3 SANDY SILT TILL (ML), some gravel, trace some gravel, trace plastic fines, cobbles and boulders, moist, very dense 3 SILT TILL (ML), trace gravel, trace sand, trace plastic fines, cobbles and boulders, grey, moist, very dense 4 SILT TILL (ML), trace gravel, trace sand, trace plastic fines, cobbles and boulders, grey, moist, very dense 4 SEDROCK 6 See BH Log 18-4022 T56R For Rock Core Data 7 Rock Core Data	0 Geodetic Ground Elevation 87.29 1 CLAYEY TOPSOIL, trace sand, brown to grey, dry to moist, firm 1 SS 1 SILTY SAND to SANDY 1 SS 1 SILT TILL (ML), some clay, trace gravel, brown, moist, dense 86.13 2 SS 2 SAND (SW), trace gravel, grey, wet, dense 3 SS 2 SANDY SILT TILL (ML), some gravel, trace plastic fines, cobbles and boulders, moist, very dense 4 SS 3 SILT TILL (ML), trace gravel, trace sand, trace plastic fines, cobbles and boulders, grey, moist, very dense 4 SS 4 S BEDROCK 5 84.35 5 6 See BH Log 18-4022 T56R For Rock Core Data 80.32 80.32	0 Geodetic Ground Elevation 87.29 CLAYEY TOPSOIL, trace sand, brown to grey, dry to moist, firm 1 SS 75 1 SILTY SAND to SANDY SILT TILL (ML), some clay, trace gravel, brown, moist, dense 86.13 2 SS 88 2 SAND (SW), trace gravel, grey, wet, dense 85.77 3 SS 100 2 SANDY SILT TILL (ML), some gravel, trace plastic fines, cobbles and boulders, moist, very dense 85.01 85.01 3 SILT TILL (ML), trace gravel, trace sand, trace plastic fines, cobbles and boulders, grey, moist, very dense 84.35 4 SS 88 4 SS BEDROCK 84.35 4 SS 88 4 See BH Log 18-4022 T56R For Rock Core Data 80.32 4 5	0 Geodetic Ground Elevation 87.29 1 X L L 1 CLAYEY TOPSOIL, trace sand, brown to grey, dry to moist, firm 1 SS 75 6 1 SILTY SAND to SANDY SILT TILL (ML), some clay, trace gravel, brown, moist, dense 1 SS 75 6 2 SAND (SW), trace gravel, grey, wet, dense/ gravel, grey, wet, dense/ some gravel, trace plastic fines, cobbles and boulders, moist, very dense 3 SS 100 63 3 SILT TILL (ML), trace gravel, trace sand, trace plastic fines, cobbles and boulders, grey, moist, very dense 4 SS 88 62 4 SS 88 62 84.35 4 SS 88 62 5 BEDROCK 86.13 2 See BH Log 18-4022 T56R For Rock Core Data 80.32 4 SS 80.32	Understand DESCRIPTION End of the second secon	Understand DESCRIPTION End of the second secon

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 14, 2018

- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample

 NQ
 Rock Core

 W Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 △
 Field Vane

w - Wash O- SPT(Standard Penetration Test)

WP

Datum: Ground Surface

Location: UTM 18T E=491538 N=4994880

Sheet: 1 of 1

Logged By: S.Khan

WH - Weight Of Hammer

W

WL

ENGINEERING Project No: 18-4022 **Project:** Nation Rise Wind Farm

Site Location: Concession 1-2, North Stormont, ON **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau **Reviewed By: E. Giles**

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION		Sample Number	TCR (cm)	RQD (%)	Run Length(cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation 84.	35							
		- 1—	LIMESTONE, grey, weathered, laminated with thin black bedding, horizontal fractures, poor quality rock 83.	03	1	132	46	132	83.03		
		- 2	LIMESTONE, grey, weathered, laminated with thin black bedding, horizontal fractures, vertical fracture @ 5.41m-5.49m BGS, poor quality rock	46	2	157	29	157	04.40		
			81.	46					81.46		
		3	LIMESTONE, grey, slightly weathered, laminated with thin black bedding, horizontal fractures, fair quality rock 80.	32	3	114	73	114	80.32		
		4-	End of Rock Core								

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=491538 N=4994880

Drill Date: May 14, 2018

Bentonite + Cuttings

Project: Nation Rise Wind Farm Reviewed By: E. Giles Site Location: Concession 1-2, North Stormont, ON **Client: EDPR** SUBSURFACE PROFILE SAMPLE Remarks Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 ۲5 ۲ Sample Number Strata Plot (m) Recovery (%) Elevation (m) Sample Type Blows / 0.3m DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 Blows / 0.3m Nell (%) Gr Sa Si Cl 10 20 30 40 50 60 70 80 90 20 40 60 80 86.14 Geodetic Ground Elevation 0 280mm TOPSOIL 85.86 SS 67 6 1 SILTY SAND (SM), trace fine grained sand, dark brown to brown, moist, 85.38 loose 1 SANDY SILT TILL (SM), 10 2 SS 100 60 Bentonite trace gravel, trace clay fragmented rock, 84.62 cobbles, boulders, oxidation, moist, very \dense 3 SS 96 30 2 4 SS 15 _ 3 2018-05-16 14 5 SS 46 13 4 SAND SILT TILL (SW), coarse to fine grained, trace gravel, fragmented rocks, cobbles. boulders, oxidation, wet, 6 SS 38 26 5 brown to grey, dense to 0.55mm Silica Sand compact 6 14 7 SS 46 16

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 16, 2018

Sample Type

WL- Liquid Limit WP- Plastic Limit

 \bigtriangleup - Field Vane

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ - Rock Core W - Water Content

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP W WL

Datum: Ground Surface

Location: UTM 18T E=492803 N=4996220

Sheet: 1 of 2

Project No: 18-4022

Logged By: S.Khan Compiled By: D.A.Mousseau

Logged By: S.Khan

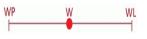
Compiled By: D.A.Mousseau **Project:** Nation Rise Wind Farm Reviewed By: E. Giles Site Location: Concession 1-2, North Stormont, ON **Client: EDPR** SUBSURFACE PROFILE SAMPLE Remarks Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 ۲5 ۲ Sample Number Strata Plot (m) Elevation (m) Recovery (%) Sample Type Blows / 0.3m DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 Blows / 0.3m Nell (%) Gr Sa Si Cl 10 20 30 40 50 60 70 80 90 20 40 60 80 7 78.52 13 8 SS 25 17 9.3 90.2 0.5 0.0 SAND SILTY TILL (SW) 8 fine to medium grained, Bentonite + Cuttings trace plastic fines, grey, wet, compact Auger Refusal Inferred 77.36 Bedrock @ 8.63 BGS 9 10-BEDROCK See BH Log 18-4022 T20R For Rock Core Data 11 74.14 12 End of Borehole 13

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Project No: 18-4022

Drill Date: May 16, 2018


Sample Type

- AS Auger Sample SS Split Spoon
- TWS Thin Walled Shelby Tube
- BS Block Sample NQ - Rock Core
- W - Water Content
- WL- Liquid Limit WP- Plastic Limit
- △ Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum: Ground Surface

Location: UTM 18T

Client: EDPR

Bentonite + Cuttings

ENGINEERING Project No: 18-4022 **Project:** Nation Rise Wind Farm **Site Location:** Concession 1-2, North Stormont, ON

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

	SUBSURFACE PROFILE					SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation 77	7.36							
			LIMESTONE, grey, weathered to slightly weathered, laminated with thin black bedding, fine grained, horizontal fractures, vertical fracture	5.66	1	165	57	170	75.66		
		2		1.14	2	152	67	152	74.14		
		-	End of Rock Core								

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type AS - Auger Sam

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=492803 N=4996220

Sheet: 1 of 1

Drill Date: May 16, 2018

Logged By: S.deBortoli

	Pi Si	roject:	: Na catio	18-4022 tion Rise Wind Farm on: Murphy Road, North R	n Stor	mont,	, ON			C	ogged By: S.del ompiled By: D.A eviewed By: E. (A.Mousseau
				SURFACE PROFILE		5	SAMF	PLE				Remarks
	Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 公<	Water Content Data • (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		\sim ~	0-	Geodetic Ground Elevation	68.74							
te	•	12222	-	CLAY TOPSOIL, trace organics, light brown, moist to dry, stiff	67.98	1	SS	38	12	φ		
Bentonite			1—	SILTY CLAY (CI), trace gravel, light brown,		2	SS	96	11	0	33	
7-20	Ŧ		2-	moist, stiff	66.46	3	SS	92	11			
2018-07-20					00.40	4	SS	25	50+		39	Spoon Refusal @ 2.51m BGS
			5			5	ss	25	16	Ø		
			4-									Could Not Install Well Due To Artesian Conditions At This Location Well Was
			5-			6	SS	29	9	•	-	Installed 1.52m North Of T58
a Sand T			6-									
0.55mm Silica Sand		<pre>X Y Y Y Y Y X A A A A A A Y Y Y A A A A A Y Y Y Y Y X A A A A A A A Y Y Y Y Y X A A A A A A Y Y Y Y Y X A A A A A A Y Y Y Y Y</pre>	_			7	SS	21	7	0	6 ⊣	Water Table Encountered @ 6.4m BGS
0.5		· · · · · · · · · · · · · · · · · · ·	7-	SILTY TILL (ML), some to trace gravel, light brown to grey, moist to wet, loose to dense								
_ sbi			8-			8	ss	13	21		8	
Bentonite + Cuttings	242 048 040 048 048 040		9-									
Bento	D	rilled	Bv.	Marathon Drilling			ole Typ Auger S			w - Wash	Datum: (Ground Surface

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 22, 2018

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS
 - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL-Liquid Limit

 WP- Plastic Limit

 △
 - Field Vane

WH - Weight Of Hammer

WL

w - Wash O- SPT(Standard Penetration Test)

Location: UTM 18T E=485047 N=4999775

Reviewed By: E. Giles Site Location: Murphy Road, North Stormont, ON **Client: EDPR** SUBSURFACE PROFILE SAMPLE Remarks Undrained Shear Strength (Cu, kPa) 25 50 75 100 125 Δ ۲5 ۲ Sample Number Strata Plot (m) Elevation (m) Recovery (%) Sample Type Blows / 0.3m DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 Blows / 0.3m Nell (%) Gr Sa Si Cl 10 20 30 40 50 60 70 80 90 20 40 60 80 9 SS 33 52 10 8 10 SS 25 13 11 12 56.55 Bentonite + Cuttings 6 49.5 21.1 24.1 5.3 11 SS 58 23 SANDY GRAVELLY TILL (SG), trace clay, dark grey, wet, dense 13 55.35 Auger Refusal Inferred Bedrock @ 13.39 BGS 14 BEDROCK 15 See BH Log 18-4022 WTG-58R For Rock Core Data 16 52.25 End of Borehole 17 18

Project: Nation Rise Wind Farm

Project No: 18-4022

Logged By: S.deBortoli Compiled By: D.A.Mousseau

Drilled By: Marathon Drilling

Drill Method: HSA / SS

Drill Date: May 22, 2018

Sample Type

- AS Auger Sample SS Split Spoon
- TWS Thin Walled Shelby Tube
- BS Block Sample NQ - Rock Core
- W - Water Content
- WL- Liquid Limit WP- Plastic Limit
- △ Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

W

WL

WP

Datum: Ground Surface

Location: UTM 18T E=485047 N=4999775

Client: EDPR

Bentonite + Cuttings 7

ENGINEERING Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: Murphy Road, North Stormont, ON

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE			SAM	PLE		(m)		
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	TCR (cm)	RQD (%)	Run Length (cm)	Run Depth Elevation (m)	Unconfined Compressive Strength △ (MPa) △ 10 20 30 40 50 60 70 80 90 100110120130140150	Remarks
		0-	Geodetic Rock Elevation 5	55.35							
		- 1	SHALEY LIMESTONE, black / grey, thinly laminated to laminated, fine grained, some horizontal & vertical fracturing with significant weathering at discontinuities	53.75	1	160	98	160	53.75		
		2	SHALEY LIMESTONE, black / grey, thinly laminated to laminated, horizontal fractures with some weathering at discontinuities, highly weathered section at end of run 5 End of Rock Core	52.25	2	155	96	150	52.25		

Drilled By: Marathon Drilling

Drill Method: Casing / NQ Core

Sample Type AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ- Rock Core W - Water Content WL - Liquid Limit WP - Plastic Content △ - Unconfined Compressive Strength

w - Wash o - SPT(Standard Penetration Test) TCR - Total Core Recovery RQD - Rock Quality Designation

Datum: Ground Surface

Location: UTM 18T E=485047 N=4999775

Sheet: 1 of 1

Drill Date: May 22, 2018

Borehole Log: BH PSR1

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: BH-PSR1 **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE		S	SAMF	PLE		Remark	s
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa)	
	~ . ~	0-	Geodetic Ground Elevation	67.53						
		-	CLAY Topsoil, with ORGANICS (corn), brown, moist, soft	66.77	1	SS	46	4	φ	
		1–	(CL) CLAY, trace silt,		2	SS	96	3	, 3 5	
		2-	brown, moist, soft	65.25					ے 50 54	
		-	(CL) CLAY, trace silt, brown to grey, moist to	03.23	4	SS	100	wн	Water Encount 2.28m BGS	ered @
		3-	wet, very soft	63.87	5	SS	-	wн	0.0 0.8	40.0 59.2
		4—	End of Borehole						19	
		- 5-								
		-								
		6-								
		7–								
		- 8-								

Drilled By: Marathon Drilling

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

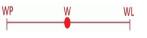
 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane



- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum:

Location: UTM 18T

Sheet: 1 of 1

Drill Date: April 30, 2018

Drill Method: HSA / SS

Borehole Log: BH PSR1B

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: BH-PSR1B **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	SUBSURFACE PROFILE					SAMF	PLE			Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa)	Grain Size (%) Gr Sa Si Cl
	2	0-	Geodetic Ground Elevation	67.36						
			CLAY Topsoil, trace SILT, with trace ORGANICS (corn), brown, moist, firm	66.60	1	SS	44	8	φ ⁸	
		1-	(CL) CLAY, trace to some SILT, brown / grey, moist, firm	65.84	2	SS	96	7	₽ 7	
		2-			3	ss	100	2	¢2	No Water Encountered During Drilling
			brown / grey, moist, very soft		4	SS	100	2	¢ ²	
		3-	(CL) 228mm CLAY, trace SILT, transitioning to silty TILL, with CLAY,	64.31 63.70	5	SS	54	17	617	
		4-	trace gravel, brown, moist, very stiff End of Borehole							
		5-								
		6-								
		7-								
		8-								

Drilled By: Marathon Drilling

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane

- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum:

Location: UTM 18T

Sheet: 1 of 1

Drill Date: April 30, 2018

Drill Method: HSA / SS

Borehole Log: BH PSR2

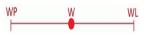
Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: BH-PSR2, Nine Mile Road, North Stormont **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

SUBSURFACE PROFILE					SAMPLE						Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ ···································	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		0-	Geodetic Ground Elevation	67.75							
		- 0	CLAY Topsoil, trace ORGANICS, brown, moist, firm to stiff	66.99	1	SS	38	8	Ŷ		Auger Thru Cobbles / Boulders From 0-2.28m
		1–	(CL) CLAY, trace SILT, brown, moist, soft	66.23	2	SS	85	3		29	
		2-	(CL) CLAY, trace SILT, brown, moist, very soft	65.47	3	ss	100	wн			No Water Encountered During Drilling
			(CL) CLAY, trace SILT, brown / grey, moist, very	03.47	4	ss	100	wн			
		3-	soft	64.09	5	SS	100	wн		_34	
		4-	End of Borehole								
		5-									
		6-									
		7-									
		8-									

Drilled By: Marathon Drilling

Drill Method: HSA / SS


Sample Type AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample NQ - Rock Core W - Water Content W - Itopit Limit

- WL- Liquid Limit WP- Plastic Limit
- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum:

Location: UTM 18T

Sheet: 1 of 1

Drill Date: May 3, 2018

Borehole Log: BH PSR3

Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: Forgues Road, North Stormont **Client: EDPR**

Logged By: A.Pleau Compiled By: D.A.Mousseau Reviewed By: E. Giles

SUBSURFACE PROFILE						SAMPLE					Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 52 02 52 62 52 52 4 Standard Penetration Resistance ○ Blows / 0.3m ○ 10 20 30 40 50 60 70 80 90	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		0-	Geodetic Ground Elevation	72.43							
	$\left[\frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} \right\} \right]$	- 0	silty CLAY Topsoil, trace ORGANICS, brown, moist, firm	71.67	1	SS	50	8	P		
		1–	(CL) silty CLAY , brown / grey, moist, firm		2	SS	100	6			
		- 2-	(CL) silty CLAY, trace	70.91	3	SS	83	26		2 6	No Water Encountered
	HH H	_	SAND, some GRAVEL, brown / grey, moist, very stiff, TILL		4	SS	38	18	ϕ		During Drilling
	11	3-		69.38							
	H H	_	(CL) silty CLAY, trace SAND, some GRAVEL, brown / grey, moist, stiff	68.77	5	SS	63	13	6	3 2	65.2 13.3 21.5
		4 —	End of Borehole								
		-									
		5-									
		-									
		6—									
		-									
		7—									
		_									
		8-									

Drilled By: Marathon Drilling

- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum:

Location: UTM 18T

W WP WL

Sheet: 1 of 1

Drill Date: May 7, 2018

Drill Method: HSA / SS

Logged By: S.deBortoli Compiled By: D.A.Mousseau

Reviewed By: E. Giles

Site Location: Concession 10-11, North Stormont, ON **Client: EDPR** SUBSURFACE PROFILE SAMPLE Remarks Undrained Shear Strength (Cu, kPa) Δ 25 50 75 100 125 <u>5</u>7 Sample Number Strata Plot (m) Recovery (%) Elevation (m) Sample Type Blows / 0.3m DESCRIPTION Ē Grain Size (%) **Standard Penetration Resistance** Water Content Data Depth (0 0 Blows / 0.3m Nell (%) Gr Sa Si Cl 10 20 30 40 50 60 70 80 90 20 40 60 80 77.20 Geodetic Ground Elevation 0 clayey Topsoil, brown, 1 SS 46 7 moist, firm 76.44 (CL) CLAY, trace SILT, 25 SS 83 1 2 4 trace GRAVEL, brown, 75.93 moist, soft No Water Encountered During Drilling End of Borehole 2 3 4 5 6 7 8

Drilled By: Marathon Drilling

Sample Type

NQ - Rock Core W - Water Content

WL- Liquid Limit WP- Plastic Limit

△ - Field Vane

AS - Auger Sample SS - Split Spoon TWS - Thin Walled Shelby Tube BS - Block Sample

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

W

WL

Datum:

Location: UTM 18T

Drill Method: HSA / SS

Project No: 18-4022

Project: Nation Rise Wind Farm

Drill Date: May 14, 2018

WP

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

	(SUBS	SURFACE PROFILE		5	SAMF	PLE			Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) Standard Penetration Resistance Blows / 0.3m 10 20 30 40 50 60 70 80 90 Undrained Shear Strength (Cu, kPa)	Grain Size (%) Gr Sa Si Cl
		0	Geodetic Ground Elevation	77.88						
		_	silty SAND, trace GRAVEL, dark brown, moist, compact	77.12	1	SS	54	11		
		1–	SAND, coarse GRAVEL, angular rock, oxidated, brown, moist to dry,	76.36	2	SS	96	47	5	49.0 30.6 20.4
		_	dense SAND, trace to some	70.50	3			+100		Auger Refusal @ 1.68m
		2	SILT, trace GRAVEL, oxidated, dark brown, moist to wet, compact End of Borehole							BGS
		3-								
		4-								
		5								
		6-								
		7-								
		8-								

Drilled By: Marathon Drilling

 \triangle - Field Vane

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

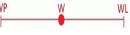
 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer


Datum:

Location: UTM 18T

Drill Method: HSA / SS

Drill Date: May 20, 2018

WP

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE		S	SAMF	PLE		Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) <u> <u> </u></u>
	\sim	0-	Geodetic Ground Elevation	70.01					
	Ĩ		177mm TOPSOIL sandy Silt, trace CLAY, transitioning to silty	69.41	1	SS	79	9	9
		1–	CLAY, brown to dark brown, dry to moist, loose		2	SS	88	1	
		- 2-			3	SS	100	WH	• . 34
		- 3-	CLAY, grey, wet, very soft		4	SS	100	WH	
		-			5	SS	100	wн	
		4-	End of Borehole	65.74					27
		5-							
		6-							
		7-							
		- 8-							

Drilled By: Marathon Drilling

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum:

Location: UTM 18T

Drill Method: HSA / SS

Drill Date: May 17, 2018

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane

 \triangle - Field Vane

W WP WL

Project No: 18-4022 **Project:** Nation Rise Wind Farm Site Location: Concession 11-12, North Stormont, ON **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE		S	SAMF	PLE				Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 52 05 52 05 52 05 52 Standard Penetration Resistance ○ Blows / 0.3m ○ 10 20 30 40 50 60 70 80 90	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		0-	Geodetic Ground Elevation	75.56							
	$\left[\left($	-	Topsoil / organics, dark brown, moist, loose to very dense	74.80	1	SS	38	-			Auger Refusal at 0.457m BGS on Inferred bedrock or boulder
	$\begin{bmatrix} l_{1} \\ l_$	1–	sandy Topsoil, some GRAVEL and anuglar rock, brown, moist to \dry, compact	74.19	2	SS	58	21		9	Auger Refusal at 1.37m BGS
		2–	SAND & GRAVEL, angular stone, brown to light brown, dry, very dense	73.58	3	SS	88	55		•5	40.8 No Water Encountered During Drilling
		- -	End of Borehole								
		3- - 4-									
		- 5—									
		6-									
		7-									
		8-									

Drilled By: Marathon Drilling

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum:

Location: UTM 18T

Drill Method: HSA / SS

Drill Date: May 15, 2018

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane

 \triangle - Field Vane

Logged By: S.deBortoli Compiled By: D.A.Mousseau

Reviewed By: E. Giles

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: Marionville Road, North Stormont, ON **Client: EDPR**

	S	UBS	SURFACE PROFILE		9	SAMF	PLE			Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) <u>2</u> <u>2</u>	Grain Size (%) Gr Sa Si Cl
		0-	Geodetic Ground Elevation	78.20						
	$l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l$	-	clayey TOPSOIL, trace ORGANICS, light brown, dry, firm	77.44	1	SS	29	7	φ	
		1–	(CL) CLAY, trace to some SILT, light brown, moist, firm	76.68	2	SS	90	7		0.0 3.1 22.9 74.0
		2-	(CL) CLAY, trace SILT, light brown, moist, soft	75.92	3	SS	100	3		No Water Encountered During Drilling
		- 3–	clayey Silt, dark grey to brown, wet, stiff	75.15	4	ss	50	9	•16	
			SILT, some CLAY, dark brwon, very stiff	74.54	5	ss	42	18	_ 14	
		4 5 6 7	End of Borehole							
		7— - 8—								

Drilled By: Marathon Drilling

 \triangle - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum:

Location: UTM 18T

Drill Method: HSA / SS

Drill Date: May 17, 2018

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE		5	SAMF	PLE		Re	marks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Standard Penetration Resistance Water Content Data	Size (%) a Si Cl
		0-	Geodetic Ground Elevation	72.00						
			Clayey TOPSOIL / ORGANICS, dark brown, moist, very stiff	71.40	1	SS	67	16	φ	
		1–	CLAY TILL, trace to some GRAVEL, light brown, moist, very stiff	70.48	2	SS	75	15	9 0 Inferred Be	odrock @
			End of Borehole						1.52m BG	S
		2-								
		-								
		3–								
		_								
		4 –								
		_								
		5-								
		_								
		6-								
		-								
		7–								
		_								
		8-								

Drilled By: Marathon Drilling

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum:

Location: UTM 18T

Drill Method: HSA / SS

Drill Date: June 3, 2018

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane

 \triangle - Field Vane

W WP WL

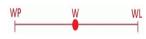
Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE		Ş	SAMF	PLE			Remarks
 Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) ^Δ <u>S</u>	Grain Size (%) Gr Sa Si Cl
ļ	{ >	0-	Geodetic Ground Elevation	71.75						
		_	100mm TOPSOIL SILT, with CLAY, dark brown, dry, firm	70.99	1	SS	54	6	Ŷ	
		1–	silty CLAY to CLAY, light brown to light grey, moist, very soft	70.23	2	SS	71	2	¢	
		2-			3	SS	100	3	→ 31 → 31 →	3.0 5.4 44.7 46.9
		- 3–	CLAY, dark grey, wet, soft to very soft		4	SS	100	wн		
		3-			5	SS	100	wн	43	
		4-	End of Borehole	67.49					54 63	
		5-								
		6-								
		7-								
		8-								

Drilled By: Marathon Drilling

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer


Datum:

Location: UTM 18T

Drill Date: June 3, 2018

Drill Method: HSA / SS

 \triangle - Field Vane

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE		ŝ	SAMF	PLE				Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 52 05 52 05 52 05 52 Standard Penetration Resistance ○ Blows / 0.3m 10 20 30 40 50 60 70 80 90	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		0-	Geodetic Ground Elevation	92.91							
		-	SAND, fine grained, ORGANICS, oxidation, dark brown, dry, loose	92.15	1	SS	71	4	Q		
		1—	Sandy SILT to SILT, oxidation, light brown, dry, very stiff	91.39	2	ss	100	30		13	
		- 2-	SILT to Sandy SILT, trace GRAVEL, oxidation, light brown,		3	ss	100	58	•		
			dry, very hard	90.63						10	
		3-	Sandy SILT, light brown, moist to wet, very hard		4	SS	83	56		1 3	
		_		89.25	5	SS	79	78			
		4-	End of Borehole								
		5-									
		6—									
		7–									
		8-									

Drilled By: Marathon Drilling

 \triangle - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

W

WL

Datum:

Location: UTM 18T

Drill Method: HSA / SS

Drill Date: May 30, 2018

WP

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE		S	SAMF	PLE			Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ ☆	Grain Size (%) Gr Sa Si Cl
		0-	Geodetic Ground Elevation	70.34						
		- 0	SILT, trace CLAY, oxidated, brown, dry, stiff	69.58	1	SS	67	10	Ŷ	
		1–	silty CLAY, oxidated, brown, moist, firm	68.82	2	SS	100	6	↓	
		2-	CLAY, some SILT, oxidated, greenish grey, moist, firm	68.06	3	SS	100	5	Φ	
		_	CLAY, greenish grey, moist to wet, firm	67.29	4	SS	100	5	• ●	
		3-	CLAY, some GRAVEL, grey, wet, very soft	66.68	5	ss	92	2	0	
		4-	End of Borehole							
		5-								
		6-								
		7-								
		8-								

Drilled By: Marathon Drilling

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum:

Location: UTM 18T

Drill Method: HSA / SS

Drill Date: May 28, 2018

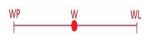
- Sample Type

 AS
 Auger Sample

 SS
 Split Spoon

 TWS Thin Walled Shelby Tube

 BS
 Block Sample


 NQ
 Rock Core

 W
 Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge Field Vane
- \triangle Field Vane

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

		UBS	SURFACE PROFILE		S	SAMF	PLE			Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) \(\Lambda\) <	Grain Size (%) Gr Sa Si Cl
		0-	Geodetic Ground Elevation	74.34						
		_	SAND, some to trace SILT, brown, dry, loose	73.58	1	SS	33	8	φ	
		1—	Silty SAND, some to trace GRAVEL, fragmented ROCKS, oxidated, brown, dry,	72.82	2	SS	25	12	•14	
	<u></u>	- 2-	compact // SAND to Silty SAND, fragmented ROCKS,		3	SS	33	26		
		_	GRAVEL & PEBBLES, brown, dry, compact	72.06	4	SS	88	30		
		3-	SAND, fine to medium grained, GRAVEL, fragmented ROCKS,	71.29	-					
		-	brown, dry to moist, dense SAND, fine to medium	70.68	5	SS	50	37	6	
		4—	grained, GRAVEL, fragmented ROCKS, brown, wet, dense							
		_	End of Borehole							
		5-								
		6—								
		7-								
		8-								

Drilled By: Marathon Drilling

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane

 \triangle - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum:

Location: UTM 18T

Sheet: 1 of 1

Drill Date: May 30, 2018

Drill Method: HSA / SS

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

		S	UBS	SURFACE PROFILE		Ę	SAMF	PLE		Remarks
Well		Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) <u> <u> </u></u>
			0-	Geodetic Ground Elevation	84.66					
)	-	125mm TOPSOIL sandy SILT, trace CLAY, trace ORGANICS, dark brown, moist, loose	83.90	1	SS	71	5	
			1—	SILT, trace to some SAND, oxidation, brown to grey, moist, dense	83.14	2	SS	75	34	•14
			2-	silty SAND, trace plastic fines, trace GRAVEL,		3	SS	88	39	
			_	TILL, grey, wet, dense to very dense	91 61	4	ss	71	55	57 35.5 3.3 34.4 6.8 Auger Refusal @ 2.72m BGS
			3-	silty SAND, trace GRAVEL, fagmented rocks & cobbles,	81.61	5	SS	96	38	
	Ĩ		4—	boulders, grey, moist, dense End of Borehole						
			5—							
			6-							
			7–							
			- 8-							

Drilled By: Marathon Drilling

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS
 - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 V
 - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

Datum:

Location: UTM 18T E=492501 N=4996450

Drill Date: May 15, 2018

Drill Method: HSA / SS

 \triangle - Field Vane

Sheet: 1 of 1

WL

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: BH PSR 15 **Client: EDPR**

Logged By: S.Khan Compiled By: D.A.Mousseau Reviewed By: E. Giles

		SUB	SURFACE PROFILE		5	SAMF	PLE			Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ ☆	• Gr Sa Si Cl
		_ 0_	Geodetic Ground Elevation	86.88						
	Ž	-	75mm TOPSOIL sandy SILT, trace plastic fines, trace CLAY, trace		1	ss	58	5	21	
			ORGANICS, trace GRAVEL, fragmented		2	SS	29	47	9	
		1-	rocks, dark brown, moist, very dense	85.79	_					Inferred Bedrock Auger Refusal @ 1.09m BGS
		2-								
		- 3								
		4-								
		5-								
		6-								
		7-								
		8-								

Drilled By: Marathon Drilling

 \triangle - Field Vane

Datum:

Location: UTM 18T

Drill Method: HSA / SS

Drill Date: May 15, 2018

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS
 - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 V
 - Field Vane

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: Conc 1-2, Finch **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

	S	UBS	SURFACE PROFILE		5	SAMF	۶LE				Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) 20 20 20 20 20 20 20 20 20	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		0-	Geodetic Ground Elevation	82.16							
	$\left[\left\{ $	-	clay TOPSOIL, trace SAND, some GRAVEL & fractured rock, light brown, moist to dry, stiff	81.40	1	SS	46	11			
		1–	clayey TILL, some to trace GRAVEL, trace		2	SS	100	38		_8 ● ^H	0.0 36.3 50.8 12.9
		2-	SAND, light brown, moist to dry, hard	79.88	3	SS	100	71			No Water Encountered During Drilling
		_	clayey TILL, with fractured rock, light brown, moist to dry, \hard	79.27	4	SS	50	50+		9	Auger Refusal @ 2.62m BGS Inferred Bedrock
		3-	End of Borehole								
		4 —									
		-									
		5—									
		-									
		6-									
		-									
		7–									
		-									
		8-									

Drilled By: Marathon Drilling

 \triangle - Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum:

Location: UTM 18T

Drill Method: HSA / SS

Drill Date: May 20, 2018

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: County Road 9, North Stormont, ON **Client: EDPR**

Logged By: S.deBortoli Compiled By: D.A.Mousseau Reviewed By: E. Giles

SUBSURFACE PROFILE				5	SAMF	PLE			Remarks	
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) <u>2</u> </th <th>Grain Size (%) Gr Sa Si Cl</th>	Grain Size (%) Gr Sa Si Cl
	$\mathbf{s} = \begin{bmatrix} \ell \ell' \ell' \ell' \\ \ell \ell' \ell' \\ $		Geodetic Ground Elevation TOPSOIL, trace ORGANICS, broken / fractured rocks, brown, moist to dry End of Borehole	<u>-0.60</u>	1	SS	50	20		Inferred Bedrock @ 0.58m BGS No Water Encountered

Drilled By: Marathon Drilling

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

Datum:

Location: UTM 18T

Drill Method: HSA / SS

Drill Date: May 29, 2018

 Sample Type

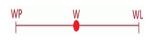
 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core


 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane

 \triangle - Field Vane

Borehole Log: BH LD 1

Logged By: S. Khan Compiled By: A.Byers

Reviewed By: E.Giles

Project No: 18-4022 Project: Nation Rise Wind Farm Site Location: North Stormont, Ontario **Client: EDPR**

Strata Plot (m)	∣ Oepth (m)	DESCRIPTION Geodetic Ground Elevation SAND (SM), fine	0.0 Elevation (m)	Sample Number	Sample Type	Recovery (%)	.3m	Undrained Shear Strength (Cu, kPa) $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
	0-		0.00		Sar	Recov	Blows / 0.3m	Standard Penetration Resistance O Blows / 0.3m O 10 20 30 40 50 60 70 80 90	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
	-	SAND (SM), fine							20 40 00 00	
		grained, some SILT, oxidated, brown, loose,	-0.61	1	SS	37	8	9	24	
24	1—	transitioning to SILTY CLAY (CL), oxidated, brown/grey, stiff	-1.22	2	SS	79	19		_ 14	
	_	oxidated, brownish grey, dry, very stiff	-1.83	3	SS	88	13		12	
	2—	some cobble, boulders some GRAVEL,	-2.44	4	SS	50	50		1 0	
· · · · ·	- 3- 4- 5- 6- 7- °	fragmented rocks, brown, moist, compact SILT (ML),some GRAVEL, fragmented rocks, cobbles, oxidated, brown, moist End of Borehole								Auger and spoon refusal at 2.74m
		3- 3- 4- 5- 6-	SILTY CLAY (CL), oxidated, brownish grey, dry, very stiff 2 - SILT (ML), some CLAY, some cobble, boulders some GRAVEL, fragmented rocks, brown, moist, compact 3 - SILT (ML),some GRAVEL, fragmented rocks, cobbles, oxidated, brown, moist 4 - End of Borehole 5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	SILTY CLAY (CL), oxidated, brownish grey, dry, very stiff 2	SILTY CLAY (CL), oxidated, brownish grey, dry, very stiff 2 - SILT (ML), some CLAY, some cobble, boulders some GRAVEL, fragmented rocks, brown, moist, compact 3 - SILT (ML),some GRAVEL, fragmented rocks, cobbles, oxidated, brown, moist 4 - End of Borehole 5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	SILTY CLAY (CL), oxidated, brownish grey, dry, very stiff 2 - SILT (ML), some CLAY, some cobble, boulders some GRAVEL, fragmented rocks, brown, moist, compact 3 - SILT (ML), some GRAVEL, fragmented rocks, cobbles, oxidated, brown, moist 4 - End of Borehole 5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	SILTY CLAY (CL), oxidated, brownish grey, dry, very stiff 3 SS 88 2- SILT (ML), some CLAY, some cobble, boulders some GRAVEL, fragmented rocks, brown, moist, compact 4 SS 50 3- SILT (ML), some GRAVEL, fragmented rocks, cobbles, oxidated, brown, moist 4 SS 50 4- End of Borehole - - - - - 5- - - - - - - - 6- - - - - - - - 7- - - - - - - - 7- - - - - - - - 7- - - - - - - - 7- - - - - - - - - 1 -	SILTY CLAY (CL), oxidated, brownish grey, dry, very stiff 2- SILT (ML), some CLAY, some cobble, boulders some GRAVEL, fragmented rocks, brown, moist, compact 3- SILT (ML), some GRAVEL, fragmented rocks, cobbles, oxidated, brown, moist 4- End of Borehole 5- 6- 7- 7-	SILTY CLAY (CL), oxidated, brownish grey, dry, very stiff 2 - SILT (ML), some CLAY, some cobble, boulders some GRAVEL, fragmented rocks, Drown, moist, compact 3 - SS 50 50 -2.44 4 SS 50 50 -2.44 5 - CAN 4 - End of Borehole 5 - CAN 6 - CAN 7 - CAN 5 - CAN 6 - CAN 7 - CAN 5 - CAN	SILTY CLAY (CL), oxidated, brownis grey, div, very stiff SILT (ML), some CLAY, some GRAVEL, fragmented rocks, brown, moist, compact 3- SILT (ML), some GRAVEL, fragmented rocks, cobbles, oxidated, brown, moist 4- End of Borehole 5- 6- 7- -

Drilled By: Marathon Drilling

Drill Method: CME 55

- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

W WP WL

Datum:

Location: UTM 18T E=481474 N=5006914

Sheet: 1 of 1

Drill Date: June 12, 2018

Borehole Log: BH LD 2

Logged By: S. Khan

Project: Nation Rise Wind Farm Site Location: North Stormont, Ontario

Compiled By: A.Byers **Reviewed By: E.Giles**

	S	UBS	SURFACE PROFILE		5	SAMF	PLE				Remarks
Well	Strata Plot (m)	Depth (m)	DESCRIPTION	Elevation (m)	Sample Number	Sample Type	Recovery (%)	Blows / 0.3m	Undrained Shear Strength (Cu, kPa) △ 52 03 52 02 52 05 52 Standard Penetration Resistance ○ Blows / 0.3m ○ 10 20 30 40 50 60 70 80 90	Water Content Data (%) 20 40 60 80	Grain Size (%) Gr Sa Si Cl
		0-	Geodetic Ground Elevation	0.00							
	······································	_	SAND (SW), medium grained, dark brown, dry, compact	-0.61	1	SS	54	21		7	Topsoil 0-0.13m
		1–	transitioning to GRAVEL (GP), fragmented/angular rocks, cobbles and	-1.22	2	SS	50	47		•	
		-	boulders Fragmented rocks and	-1.83	3	SS	92	12		5	
		2–	cobbles, SAND (SW), oxidated, dry to moist, brown, dense		4	SS	79	78	2	10	
		3-	SAND (SW), coarse grained, fragmented/angular rocks, cobbles, boulders, brown, dry,	-3.20	5	SS	25	50		3	Spoon refusal at 2.74m Auger refusal at 3.2m
		- 4-	very dense SAND (SW) and GRAVEL , fragmented/angular rocks, cobbles, boulders, brown, dry,								
		5-	very dense End of Borehole								
		- 6— - 7—									
		8-									

Drilled By: Marathon Drilling

Drill Method: CME 55

Project No: 18-4022

Client: EDPR

- \triangle Field Vane

w - Wash O- SPT(Standard Penetration Test) WH - Weight Of Hammer

WP

W

WL

Datum:

Location: UTM 18T E=485175 N=5002885

Sheet: 1 of 1

Drill Date: June 12, 2018

 Sample Type

 AS
 - Auger Sample

 SS
 - Split Spoon

 TWS - Thin Walled Shelby Tube

 BS
 - Block Sample

 NQ
 - Rock Core

 W
 - Water Content

 WL- Liquid Limit

 WP- Plastic Limit

 \wedge - Field Vane

APPENDIX D

LAB RESULTS

Moisture Contents

WATER CONTENT TEST

TEST METHOD: LS 701 / ASTM C 566 / D 2216

CONTRACT NO:	18-4022	DATE SAMPLED:	varies
PROJECT:	Nation Rise - Turbines	SOURCE:	Boreholes
DATE TESTED:	7/16/18	TESTED BY:	S.Hoffman

Tare ID	Sample II	Depth (m)	SA #	Wet Weight	Dry Weight	TARE	Mass Lost	Water %
	T1-3	1.52-2.13		76.65	55.26	14.80	21.39	34.6%
	T1-4	3.05-3.66		613.40	465.90	222.22	147.50	37.7%
	T2-2	.76-1.37		77.38	63.59	13.74	13.79	21.7%
	T2-3	1.52-2.13		59.70	46.59	14.74	13.11	29.2%
	T5-6	4.57-5.18		615.80	585.00	197.95	30.80	7.4%
	T9-4	2.29-2.90		58.99	40.42	13.77	18.57	41.1%
	T9-6	4.57-5.18		657.22	492.70	237.11	164.52	39.2%
	T11-9	9.14-9.75		587.14	562.70	221.63	24.44	6.7%
	T16-7	7.62-8.23		603.30	571.20	203.98	32.10	8.0%
	T16-8	9.14-9.75		1055.00	984.10	230.60	70.90	8.6%
	T18-6	4.57-5.18		518.20	379.10	227.70	139.10	47.9%
	T18-9	9.14-9.75		64.77	60.85	14.81	3.92	7.8%
	T18-11	12.19-12.80		666.70	621.70	234.90	45.00	10.4%
	T18-12	13.72-14.33		81.10	75.06	14.84	6.04	9.1%
	T20-3	1.52-2.13		113.95	83.09	14.88	30.86	31.1%
	T20-5	3.05-3.66		602.00	431.10	232.50	170.90	46.3%
	T21-10	10.67-11.28		510.30	394.90	226.00	115.40	40.6%
	T23-8	7.62-8.23		466.30	360.00	219.50	106.30	43.1%
	T23-13	15.24-15.85		712.80	675.00	171.50	37.80	7.0%
	T28-5	3.05-3.66		720.20	691.80	256.00	28.40	6.1%
	T28-7	6.1-6.71		89.67	82.36	13.76	7.31	9.6%
	T28-10	9.14-9.75		778.00	701.85	212.70	76.15	13.5%
	T29-4	2.29-2.90		585.00	535.00	265.20	50.00	15.6%
	T29-8	7.62-8.23		132.29	110.96	15.08	21.33	18.2%
	T29-11	12.19-12.80		1019.30	973.80	248.70	45.50	5.9%

REMARKS:

CLIENT:

COPIES TO:

WATER CONTENT TEST

TEST METHOD: LS 701 / ASTM C 566 / D 2216

CONTRACT NO:	18-4022	DATE SAMPLED:	varies
PROJECT:	Nation Rise - Turbines	SOURCE:	Boreholes
DATE TESTED:	7/16/18	TESTED BY:	S.Hoffman

Tare ID	Sample ID	Depth (m)	SA #	Wet Weight	Dry Weight	TARE	Mass Lost	Water %
	T35-4	3.05-3.66		533.90	494.30	198.00	39.60	11.8%
	T35-7	7.62-8.23		634.80	604.80	218.50	30.00	7.2%
	T35-9	10.67-11.28		637.60	598.80	271.90	38.80	10.6%
	T38-4	3.05-3.66		82.86	53.88	13.94	28.98	42.0%
	T38-5	4.57-5.18		506.00	389.50	168.90	116.50	34.6%
	T38-8	9.14-9.75		124.00	111.98	14.75	12.02	11.0%
	T43-9	7.47-7.62		919.60	788.70	231.00	130.90	19.0%
	T44-3	1.52-2.13		468.00	390.80	211.50	77.20	30.1%
	T44-7	6.1-6.71		526.80	502.30	214.20	24.50	7.8%
	T46-5	3.05-3.66		85.78	81.48	13.61	4.30	6.0%
	T46-7	5.94-6.71		608.40	577.20	187.10	31.20	7.4%
	T47-7	6.1-6.71		587.30	474.10	186.60	113.20	28.3%
	T47-11	12.2-12.81		698.30	661.40	214.80	36.90	7.6%
	T54-4	3.05-3.76		605.70	454.00	221.60	151.70	39.5%
	T54-8	9.14-9.75		916.30	869.50	289.40	46.80	7.5%
	T57-5	3.05-3.76		123.40	110.39	15.08	13.01	12.0%
	T57-8	7.62-8.23		559.10	526.70	274.10	32.40	11.4%
	T58-3	1.52-2.13		554.40	464.20	190.50	90.20	24.8%
	T58-7	6.1-6.71		480.60	464.50	197.50	16.10	5.7%
	T58-11	12.19-12.80		906.30	866.40	242.00	39.90	6.0%
		ļ						
		<u> </u>						

REMARKS:

CLIENT:

COPIES TO:

WATER CONTENT TEST TEST METHOD: LS 701 / ASTM C 566 / D 2216

CONTRACT NO:	18-4022	DATE SAMPLED:	Refer to BH logs
PROJECT:	Nation Rise	SOURCE:	Boreholes
DATE TESTED:	Aug,8/2018	TESTED BY:	S.Hoffman

Tare ID	Sample ID	Depth (m)	A	Wet Weight	Dry Weight	TARE	Mass Lost	Water %
	WTG-01 SS2	0.8-1.4		57.65	43.46	13.77	14.2	47.8%
	WTG-02 SS1	0.0-0.6		58.18	49.26	13.72	8.9	25.1%
	WTG-04 SS1	not present						
	WTG-05 SS1	0.0-0.6		67.07	57.51	13.74	9.6	21.8%
	WTG-05 SS3	1.5-2.1		76.55	60.36	13.76	16.2	34.7%
	WTG-05 SS5	3.1-3.7		115.07	108.62	13.69	6.4	6.8%
	WTG-05 SS8	7.6-8.2		119.67	113.16	13.78	6.5	6.6%
	WTG-06 SS1	0.0-0.6		71.12	64.48	15.07	6.6	13.4%
	WTG-06 SS2	0.8-1.4		97.62	92.34	13.84	5.3	6.7%
	WTG-06 SS3	1.5-2.1		63.59	58.83	13.75	4.8	10.6%
	WTG-07 SS1	0.0-0.6		90.38	73.40	14.82	17.0	29.0%
	WTG-07 SS3	1.5-2.1		77.63	69.41	13.61	8.2	14.7%
	WTG-09 SS1	0.0-0.6		69.80	58.09	15.05	11.7	27.2%
	WTG-09 SS3	1.5-2.1		99.92	70.28	14.92	29.6	53.5%
	WTG-10 SS1	0.0-0.6		64.03	54.67	13.77	9.4	22.9%
	WTG-10 SS3	1.5-2.1		71.06	70.36	13.63	0.7	1.2%
	WTG-10 SS5	4.6-5.2		89.05	84.04	14.89	5.0	7.2%
	WTG-10 SS7	6.1-6.7		84.20	81.52	13.73	2.7	4.0%
	WTG-11 SS1	0.0-0.6		71.37	57.71	13.77	13.7	31.1%
	WTG-11 SS3	1.5-2.1		84.75	80.20	13.72	4.6	6.8%
	WTG-11 SS5	3.1-3.7		64.45	60.21	13.75	4.2	9.1%
	WTG-11 SS10	10.7-11.3		104.06	97.13	14.74	6.9	8.4%
	WTG-12 SS1	0.0-0.6		60.47	51.44	13.78	9.0	24.0%
	WTG-12 SS2	0.8-1.4		59.51	38.24	13.60	21.3	86.3%
	WTG-12 SS3	1.5-2.1		64.60	53.79	13.62	10.8	26.9%
	WTG-12 SS4	3.1-3.7		82.72	59.07	13.93	23.7	52.4%

REMARKS:

CLIENT:

COPIES TO:

WATER CONTENT TEST

TEST METHOD: LS 701 / ASTM C 566 / D 2216

CONTRACT NO:	18-1016	DATE SAMPLED:	Refer to BH logs
PROJECT:	Bolton River Bridge	SOURCE:	Boreholes
DATE TESTED:	Aug,8/2018	TESTED BY:	S.Hoffman

Tare ID	Sample ID	Depth (m)	A	Wet Weight	Dry Weight	TARE	Mass Lost	Water %
	WTG-16 SS1	0.0-0.6		69.6	59.8	14.84	9.8	21.7%
	WTG-16 SS2	0.8-1.4		71.0	57.9	15.1	13.1	30.7%
	WTG-16 SS3	1.5-2.1		92.7	86.0	14.8	6.8	9.5%
	WTG-16 SS5	4.6-5.2		93.3	87.4	15.1	5.9	8.2%
	WTG-18 SS1	0.0-0.6		72.1	54.7	13.9	17.4	42.5%
	WTG-18 SS2	0.8-1.4		100.1	73.5	15.1	26.6	45.6%
	WTG-18 SS3	1.5-2.1		59.9	45.0	13.6	14.8	47.2%
	WTG-18 SS5	3.1-3.7		69.4	48.6	13.8	20.9	60.0%
	WTG-18 SS7	6.1-6.7		56.7	43.5	14.8	13.2	45.8%
	WTG-20 SS1	0.0-0.6		84.8	64.2	14.8	20.6	41.8%
	WTG-20 SS6	4.6-5.2		67.2	51.2	14.7	16.1	44.2%
	WTG-20 SS7	6.1-6.7		117.8	111.4	15.1	6.4	6.7%
	WTG-20 SS8	7.6-8.2		144.0	134.0	15.0	10.0	8.4%
	WTG-21 SS1	0.0-0.6		80.7	64.1	13.7	16.6	33.0%
	WTG-21 SS3	1.5-2.1		83.8	62.4	13.8	21.4	44.1%
	WTG-21 SS6	4.6-5.2		83.6	60.2	13.7	23.4	50.3%
	WTG-21 SS8	7.6-8.2		84.5	60.6	14.9	23.9	52.2%
	WTG-21 SS10	10.7-11.3		72.0	55.7	14.9	16.3	39.9%
	WTG-21 SS14	13.7-14.3		114.1	108.5	15.0	5.6	6.0%
	WTG-21 SS15	15.2-15.9		107.9	103.5	14.9	4.5	5.0%
	WTG-23 SS65	3.1-3.7		80.1	58.8	15.1	21.3	48.8%
	WTG-23 SS7	6.1-6.7		93.1	65.9	14.7	27.2	53.2%
	WTG-23 SS8	7.6-8.2		80.2	54.1	13.6	26.1	64.5%
	WTG-23 SS11	12.2-12.8		82.7	77.76	13.6	4.9	7.7%
	WTG-23 SS13	15.2-15.9		116.5	110.13	13.8	6.4	6.6%
	WTG-23 SS14	16.8-18.4		111.2	107.92	13.7	3.3	3.5%
REMAR	KS:	WTG-21 SS	516	6 not present	:, WTG-23 S	SS6 emp	oty bag	

CLIENT:

COPIES TO:

WATER CONTENT TEST

TEST METHOD: LS 701 / ASTM C 566 / D 2216

CONTRACT NO:	18-4022	DATE SAMPLED:	Refer to BH logs
PROJECT:	Nation Rise	SOURCE:	Boreholes
DATE TESTED:	Aug,8/2018	TESTED BY:	S.Hoffman

Tare ID	Sample ID	Depth (m)	A i	Wet Weight	Dry Weight	TARE	Mass Lost	Water %
	WTG-25 SS1	0.0-0.6		100	93.64	13.7	6.4	8.0%
	WTG-25 SS3	1.5-2.1		65.7	62.8	13.7	2.9	5.9%
	WTG-27 SS1	0.0-0.6		70.8	62.0	13.7	8.8	18.2%
	WTG-27 SS2	0.8-1.4		89.9	85.6	13.8	4.3	6.0%
	WTG-28 SS1	0.0-0.6		85.9	80.7	16.8	5.2	8.1%
	WTG-28 SS3	1.5-2.1		89.5	85.3	17.4	4.2	6.2%
	WTG-28 SS6	4.6-5.2		76.7	71.5	16.7	5.2	9.5%
	WTG-28 SS8	7.6-8.4		84.8	77.7	17.7	7.1	11.8%
	WTG-29 SS1	0.0-0.6		55.1	50.9	15.0	4.2	11.7%
	WTG-29 SS3	1.5-2.1		59.3	53.6	16.8	5.7	15.5%
	WTG-29 SS6	4.6-5.2		84.7	72.6	17.1	12.1	21.8%
	WTG-29 SS9	9.1-9.8		116.1	103.9	17.6	12.2	14.1%
	WTG-29 SS12	13.7-14.3		78.9	74.2	17.0	4.7	8.2%
	WTG-32 SS1	0.0-0.6		80.1	69.4	16.4	10.7	20.2%
	WTG-32 SS2	0.8-1.4		63.5	52.6	17.6	10.9	31.1%
	WTG-32 SS4	2.3-2.9		92.4	78.6	16.8	13.8	22.3%
	WTG-35 SS1	0.0-0.6		67.8	60.1	17.8	7.7	18.2%
	WTG-35 SS3	1.5-2.1		53.0	41.2	20.1	11.8	55.9%
	WTG-35 SS5	4.6-5.2		77.2	68.8	18.5	8.4	16.7%
	WTG-35 SS6	6.1-6.7		96.2	90.7	19.8	5.5	7.8%
	WTG-35 SS8	9.1-9.8		105.3	98.8	13.8	6.5	7.6%
	WTG-38 SS1	0.0-0.6		90.4	76.5	20.3	13.9	24.7%
	WTG-38 SS3	1.5-2.1		67.1	52.6	23.4	14.5	49.7%
	WTG-38 SS6	6.7-6.7		103.7	92.1	15.5	11.6	15.1%
	WTG-38 SS8	9.1-9.8		90.9	82.4	13.7	8.5	12.4%
	WTG-38 SS9	10.7-11.3		91.8	85.1	13.8	6.7	9.4%

REMARKS: BH-WTG-38 SS7 sample bag was empty

CLIENT:

COPIES TO:

WATER CONTENT TEST

TEST METHOD: LS 701 / ASTM C 566 / D 2216

CONTRACT NO:	18-4022	DATE SAMPLED:	Refer to BH logs
PROJECT:	Nation Rise	SOURCE:	Boreholes
DATE TESTED:	Aug. 10/2018	TESTED BY:	S.Hoffman

Tare ID	Sample ID	Depth (m)	SA i	Wet Weight	Dry Weight	TARE	Mass Lost	Water %
	WTG-41 SS1	0.0-0.6		71.7	61.5	13.8	10.2	21.4%
	WTG-41 SS3	1.5-2.1		71.2	51.5	14.8	19.7	53.7%
	WTG-41 SS4	3.1-3.7		85.9	70.5	13.7	15.4	27.1%
	WTG-43 SS1	0.0-0.6		69.1	58.9	17.3	10.2	24.5%
	WTG-43 SS2	0.8-1.4		61.4	53.0	16.3	8.4	22.9%
	WTG-43 SS4	2.3-2.9		79.4	75.5	13.7	3.9	6.3%
	WTG-43 SS6	4.1-4.5		67.7	61.8	16.2	5.9	12.9%
	WTG-43 SS8	6.1-6.7		59.4	52.8	13.9	6.6	17.0%
	WTG-44 SS1	0.0-0.6		59.6	52.1	15.1	7.5	20.3%
	WTG-44 SS3	1.5-2.1		94.6	80.7	17.4	13.9	22.0%
	WTG-44 SS5	3.1-3.7		90.6	73.4	18.8	17.2	31.5%
	WTG-46 SS1	0.0-0.6		82.2	73.8	20.8	8.4	15.8%
	WTG-46 SS3	1.5-2.1		113.0	105.9	19.6	7.1	8.2%
	WTG-46 SS6	4.6-5.2		68.2	64.2	14.8	4.0	8.1%
	WTG-47 SS1	0.0-0.6		98.8	86.8	20.1	12.0	18.0%
	WTG-47 SS3	1.5-2.1		79.9	63.2	18.9	16.7	37.7%
	WTG-47 SS5	3.1-3.7		76.9	54.6	13.8	22.3	54.7%
	WTG-47 SS8	7.6-8.2		152.8	142.8	28.2	10.0	8.7%
	WTG-47 SS9	9.1-9.8		98.4	92.1	18.5	6.3	8.6%
	WTG-52 SS1	0.0-0.6		62.2	53.9	15.0	8.3	21.3%
	WTG-52 SS2	0.8-1.4		92.2	86.6	15.1	5.6	7.8%
	WTG-52 SS4	2.3-2.9		77.1	74.0	14.8	3.1	5.2%
	WTG-52 SS6	4.6-5.2		93.5	87.0	14.8	6.5	9.0%
	WTG-52 SS7	6.1-6.7		112	105.9	18.2	6.1	7.0%

REMARKS:

CLIENT:

COPIES TO:

WATER CONTENT TEST

TEST METHOD: LS 701 / ASTM C 566 / D 2216

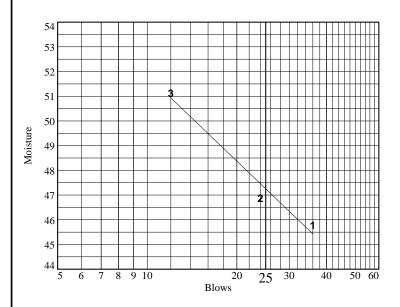
CONTRACT NO:	18-4022	DATE SAMPLED:	Refer to BH logs
PROJECT:	Nation Rise	SOURCE:	Boreholes
DATE TESTED:	Aug. 10/2018	TESTED BY:	S.Hoffman

Tare ID	Sample ID	Depth (m)	SA i	Wet Weight	Dry Weight	TARE	Mass Lost	Water %
	WTG-54 SS1	0.0-0.61		82.1	71.5	13.6	10.6	18.3%
	WTG-54 SS2	0.8-1.4		79.2	63.4	13.8	15.8	31.9%
	WTG-54 SS4	6.1-6.7		57.6	41.0	13.8	16.6	61.0%
	WTG-54 SS6	0.0-0.6		116.5	91.4	13.7	25.1	32.3%
	WTG-56 SS1	0.0-0.6		96.4	78.6	14.8	17.8	27.9%
	WTG-56 SS2A	0.8-1.3		84.3	69.4	14.8	14.9	27.3%
	WTG-56 SS4	2.3-2.9		96.3	85.7	13.8	10.6	14.7%
	WTG-57 SS2	0.0-0.6		83.4	76.9	13.9	6.5	10.3%
	WTG-57 SS7	6.1-6.7		131.1	117.6	19.6	13.5	13.8%
	WTG-58 SS3	1.5-2.1		66.6	51.7	13.9	14.9	39.4%
	WTG-58 SS6	4.6-5.2		89.4	84.6	13.9	4.8	6.8%
	WTG-58 SS8	7.6-8.2		95.7	89.7	13.6	6.0	7.9%
	WTG-58 SS10	10.7-11.3		126.2	118.0	13.8	8.2	7.9%

REMARKS:

CLIENT:

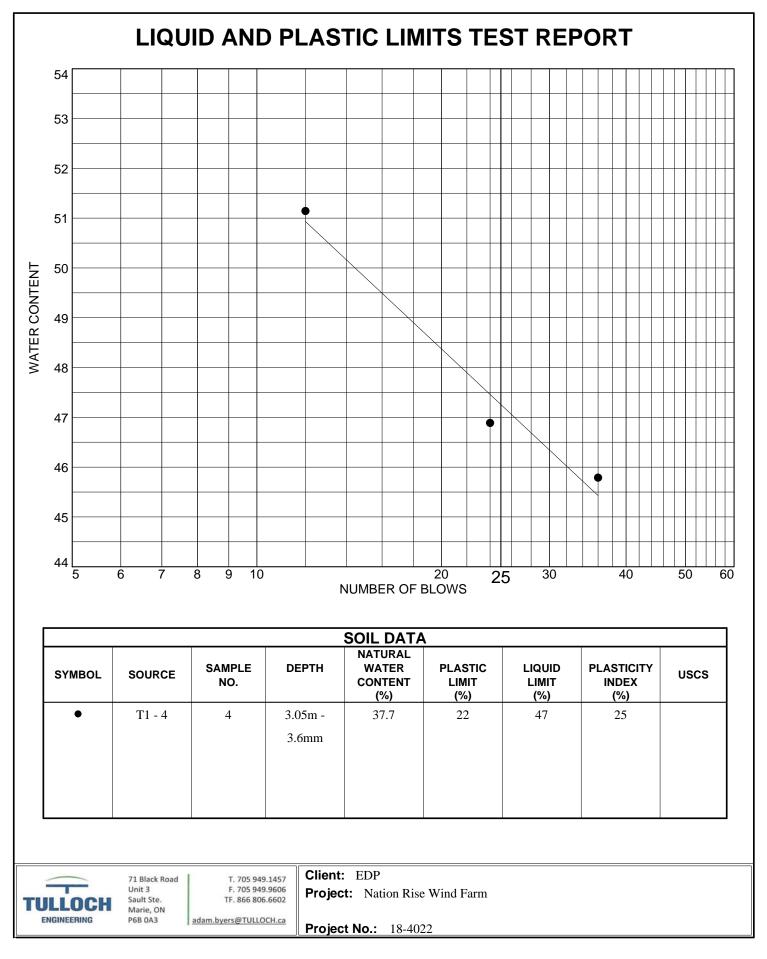
COPIES TO:


Atterberg Limits

LIQUID AND PLASTIC LIMIT TEST DATA

Client: EDP Project: Nation Rise Wind Farm Project Number: 18-4022 Location: T1 - 4 Depth: 3.05m - 3.6mm Tested by: S.Hoffman

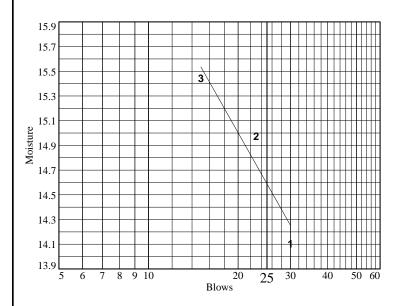
Sample Number: 4 Checked by: S.Hoffman


Run No.	1	2	3	4	5	6
Wet+Tare	31.32	31.81	33.26			
Dry+Tare	26.10	26.46	27			
Tare	14.70	15.05	14.76			
# Blows	36	24	12			
Moisture	45.8	46.9	51.1			

Liquid Limit= _	47
Plastic Limit=	22
Plasticity Index= _	25
Natural Moisture= _	37.7
Liquidity Index= _	0.6

	Plastic Limit Data									
Run No.	1	2	3	4						
Wet+Tare	20.21	22.82								
Dry+Tare	19.28	21.33								
Tare	14.83	14.73								
Moisture	20.9	22.6								

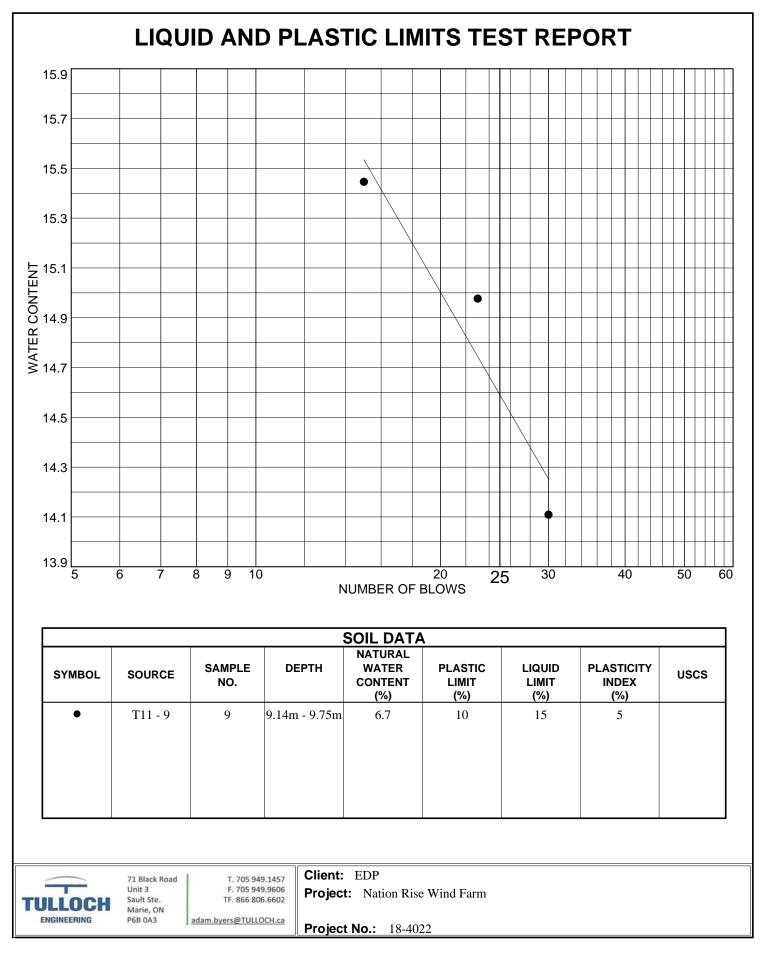
7/20/2018


_ Checked By: S.Hoffman

LIQUID AND PLASTIC LIMIT TEST DATA

Client: EDP Project: Nation Rise Wind Farm Project Number: 18-4022 Location: T11 - 9 Depth: 9.14m - 9.75m Tested by: S.Hoffman

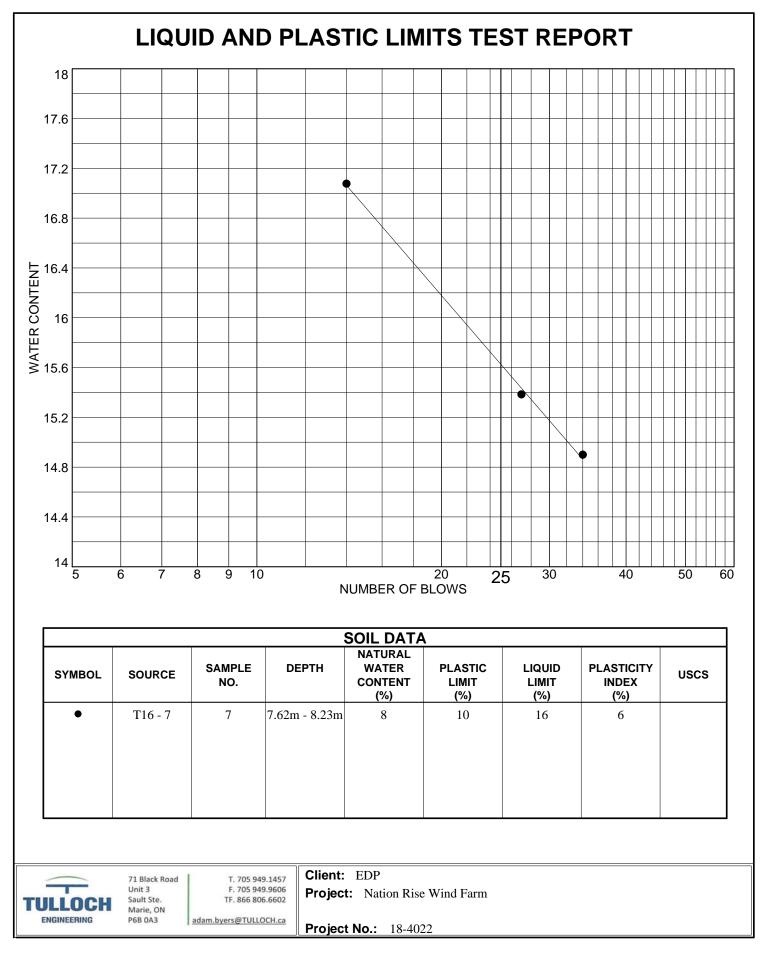
Sample Number: 9 Checked by: S.Hoffman


Liquid Limit Data									
Run No.	1	2	3	4	5	6			
Wet+Tare	32.17	33.71	28.23						
Dry+Tare	29.89	31.11	26.29						
Tare	13.73	13.75	13.73						
# Blows	30	23	15						
Moisture	14.1	15.0	15.4						

Liquid Limit= _	15
Plastic Limit= _	10
Plasticity Index= _	5
Natural Moisture= _	6.7
Liquidity Index= _	-0.7

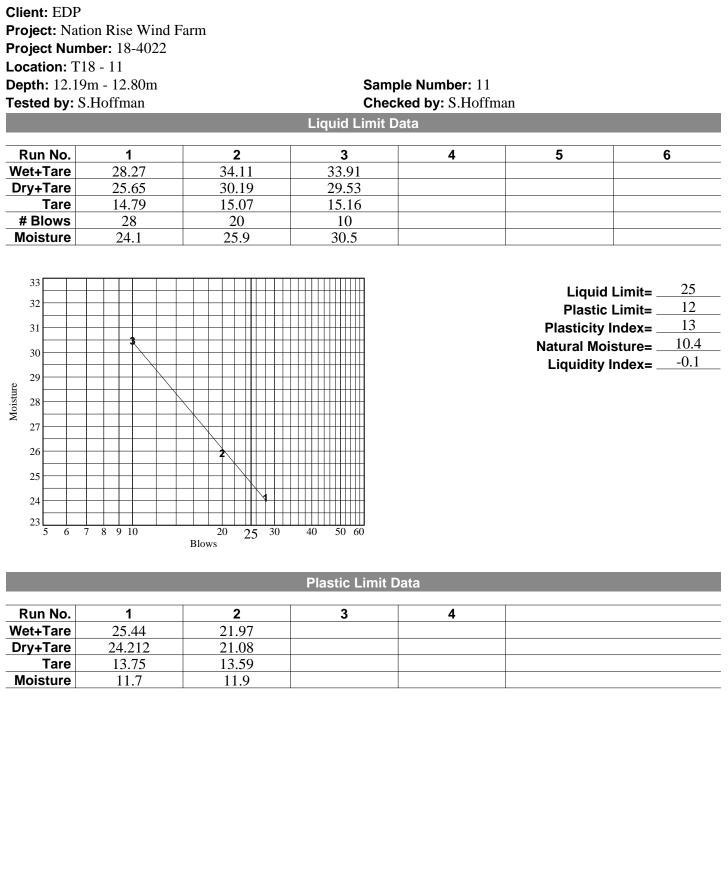
	Plastic Limit Data										
Run No.	1	2	3	4							
Wet+Tare	26.64	26.72									
Dry+Tare	25.52	25.60									
Tare	14.61	14.88									
Moisture	10.3	10.4									

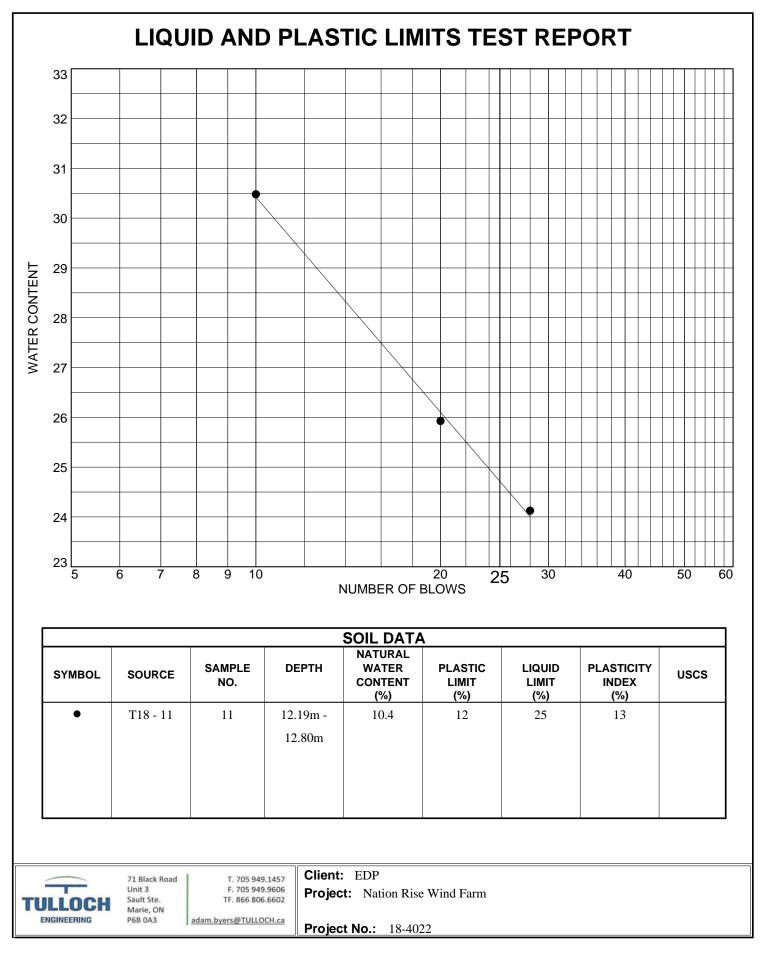
7/20/2018



_ Checked By: S.Hoffman

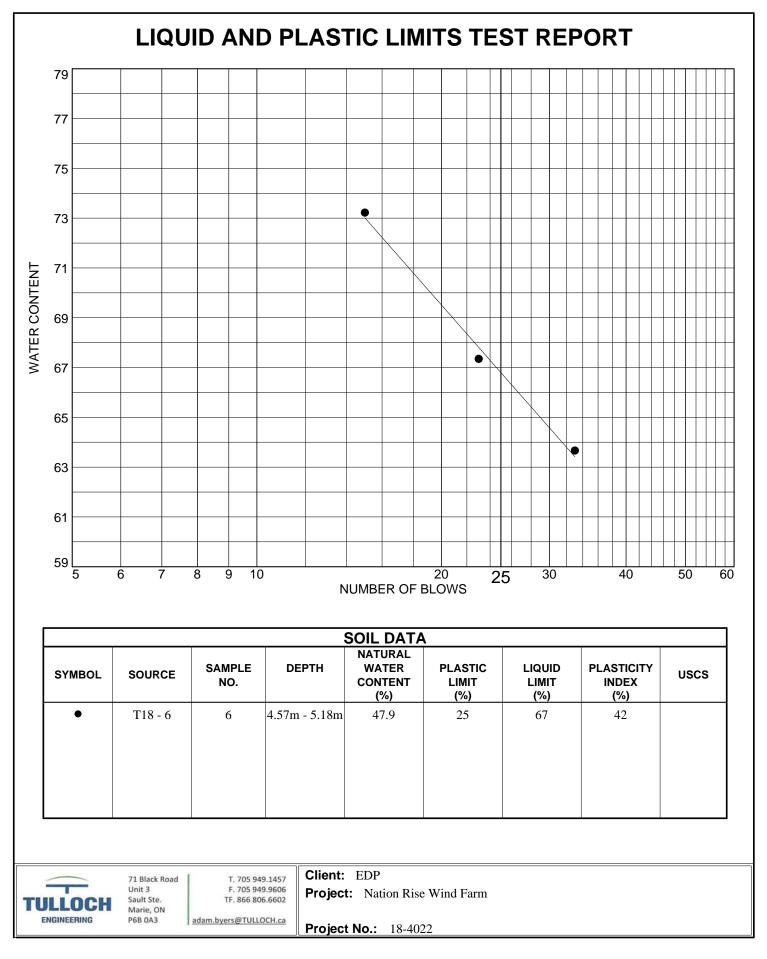
LIQUID AND PLASTIC LIMIT TEST DATA


Depth: 7.62m Fested by: S			Chec	le Number: 7 ked by: S.Hoffm	an	
			Liquid Limit D	ata		
Run No.	1	2	3	4	5	6
Wet+Tare	37.39	29.35	28.32			
Dry+Tare	34.34	27.25	26.17			
Tare # Blows	<u>13.87</u> 34	13.60 27	<u>13.58</u> 14			
Moisture	14.9	15.4	17.1			
18 17.6 17.2 16.8 16.4 16 15.6 15.2 14.8 14.4 14 5 6		20 25 30 Blows				sture= <u>8</u>
			Plastic Limit D	lata		
Run No.	1	2	3	4		
Wet+Tare	24.18	21.60				
Dry+Tare Tare Moisture	23.21 13.65 10.1	20.84 13.69+ 10.6				


7/20/2018

LIQUID AND PLASTIC LIMIT TEST DATA

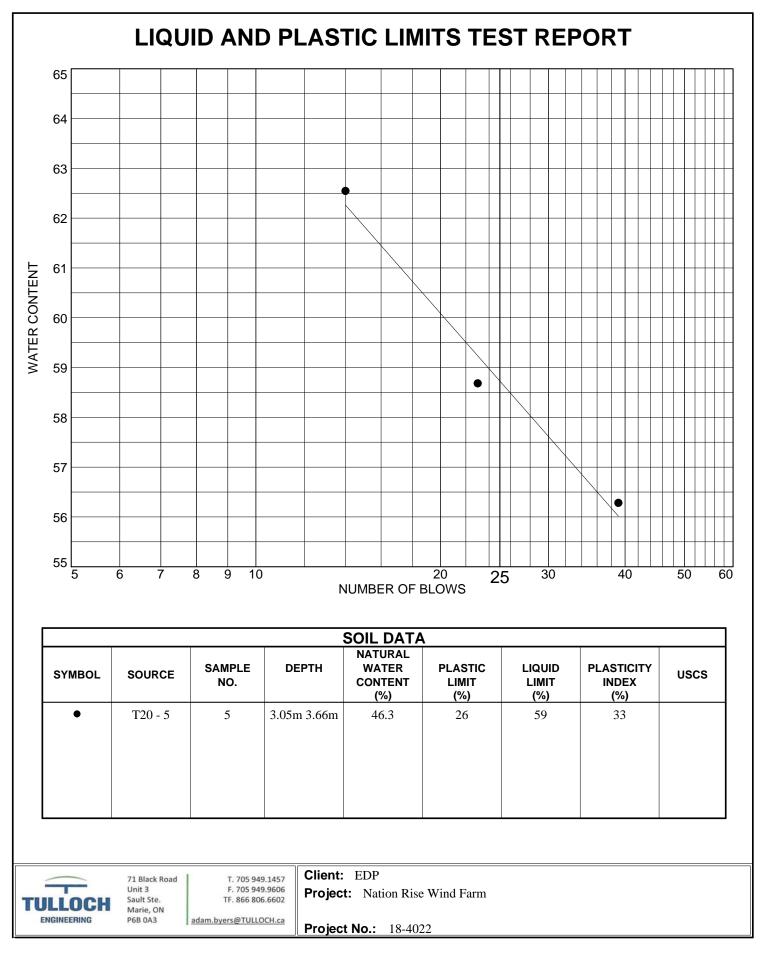
7/20/2018



_ Checked By: S.Hoffman

LIQUID AND PLASTIC LIMIT TEST DATA

7/20/2018


-	tion Rise Wind F nber: 18-4022 `18 - 6 'm - 5.18m	'arm	Chec	l e Number: 6 ked by: S.Hoffman	ı	
Liquid Limit Data						
Run No.	1	2	3	4	5	6
Wet+Tare	27.99	25.97	30.47			
Dry+Tare Tare	22.40 13.62	21.04 13.72	23.47 13.91			
# Blows	33	23	15.91			
Moisture	63.7	67.3	73.2			
75 73 71 69 67 65 63 61 59 5 6		3 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4			Plastic L Plasticity Ir Natural Mois Liquidity Ir	$\frac{42}{47.9}$
Plastic Limit Data						
Run No.	1	2	3	4		
Wet+Tare	21.75	21.54				
Dry+Tare Tare	20.14 13.75	19.96 13.77				
Moisture	25.2	25.5				
Tulloch Engineering Inc						

_ Checked By: S.Hoffman

7/20/2018

Client: EDP Project: Nation Rise Wind Farm Project Number: 18-4022 Location: T20 - 5 **Depth:** 3.05m 3.66m Sample Number: 5 **Tested by:** S.Hoffman Checked by: S.Hoffman Liquid Limit Data Run No. 1 2 3 4 5 6 Wet+Tare 28.31 28.43 31.50 Dry+Tare 23.07 22.99 24.72 Tare 13.76 13.72 13.88 # Blows 39 23 14 Moisture 56.3 58.7 62.5 65 Liquid Limit= ____ 59 64 26 Plastic Limit= ____ 33 Plasticity Index= _ 63 46.3 Natural Moisture= _ 62 0.6 Liquidity Index= 61 Moisture 60 59 2 58 57 56 55 6 7 8 9 10 20 25 30 40 50 60 5 Blows Plastic Limit Data Run No. 2 1 3 4 $20.\overline{27}$ Wet+Tare 20.69 Dry+Tare 19.24 18.94 Tare 13.72 13.66 Moisture 25.5 26.0

LIQUID AND PLASTIC LIMIT TEST DATA 7/20/2018 Client: EDP Project: Nation Rise Wind Farm Project Number: 18-4022 Location: T21-10 Depth: 10.67m - 11.28m Tested by: S.Hoffman Liquid Limit Data

4

3

34.11

27.31

14.88

13

54.7

5	7		Т					Т	 Т							Π				Т	Т	Π	Т	Π	Т	Π	Π	Π
5	6		_	 -					 -											+			+		-			
5	5									3										-			+		1			
5	4									~										+	+		Ŧ		+		Ħ	
5	3							+				\mid											t					
5	2		-					+							2					+			t		+			
5	1		+													ļ	t			+							╞	
5	0		+					+									È						+					
4	.9		+																1	+			+		+			
4	.8		+																				+		+			
	.7		ļ		_																		t				╢	H
	-	5	6	7	8	5	9	10]	Blov	2 ws	0		2	5	3	0			4(J		5	50	6	0

2

29.17

24.38

15.12

22

51.7

Run No.

Wet+Tare

Dry+Tare

Blows

Moisture

Tare

1

30

24.97

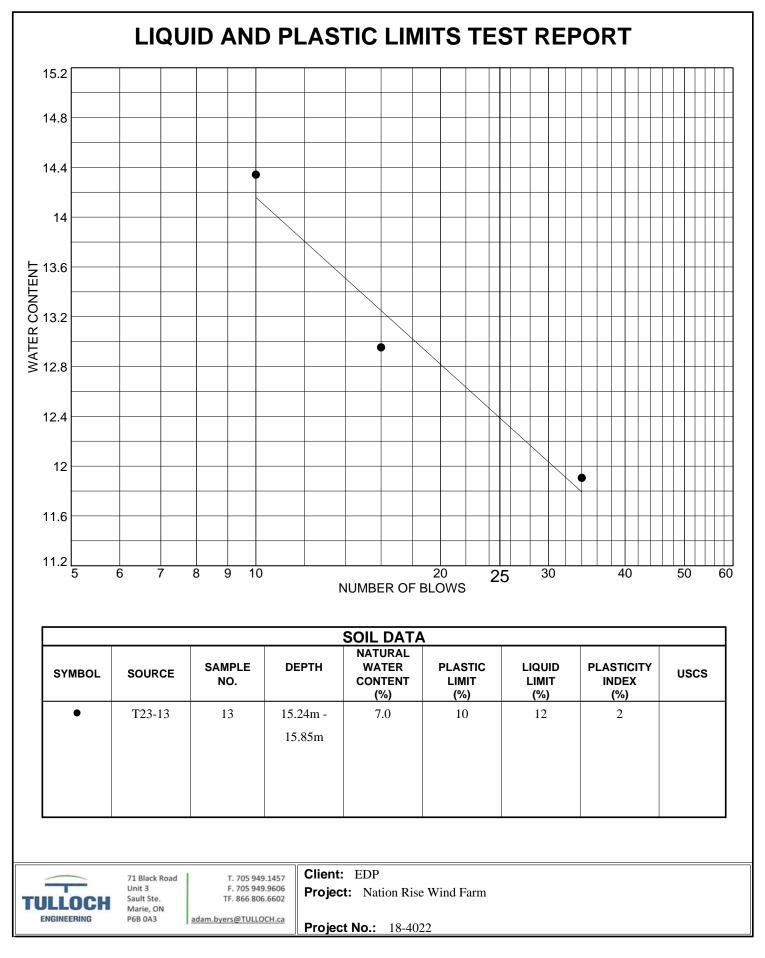
14.84

32

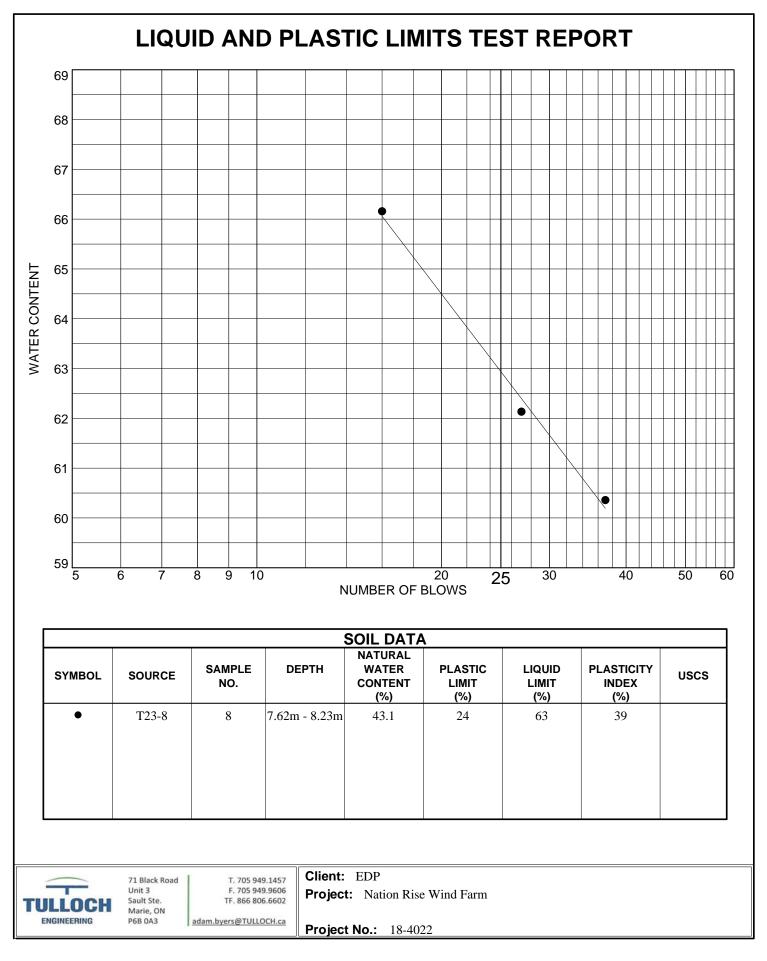
49.7

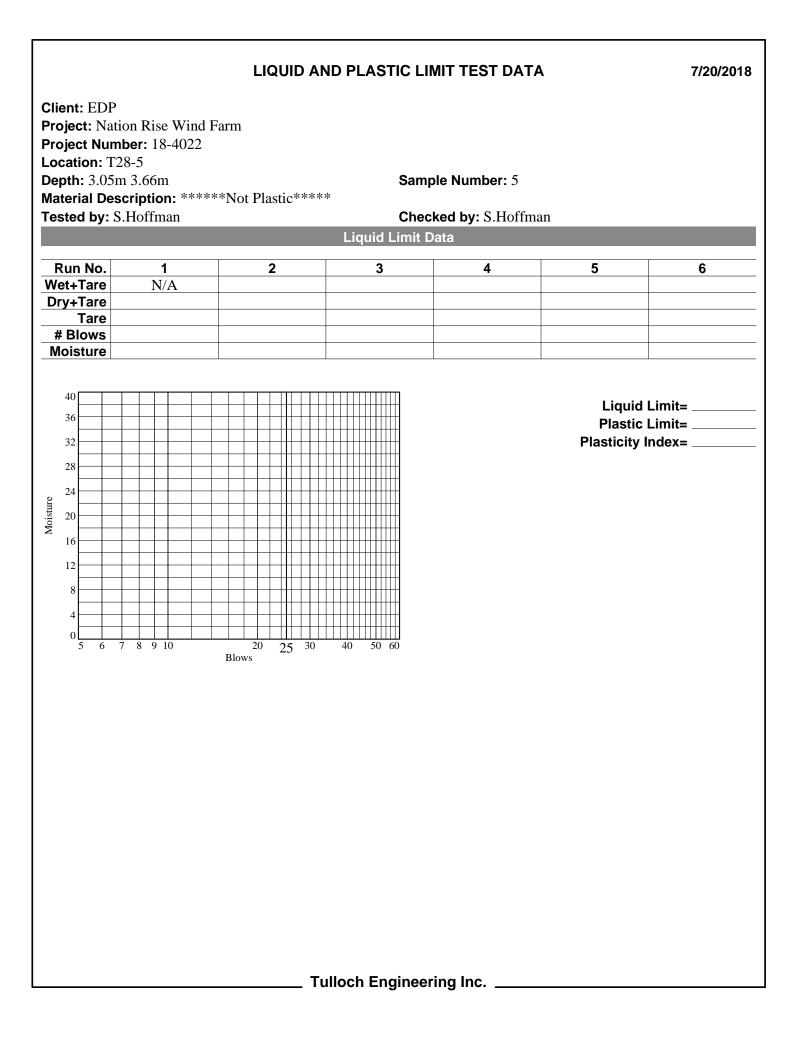
Liquid Limit= _	51
Plastic Limit=	20
Plasticity Index= _	31

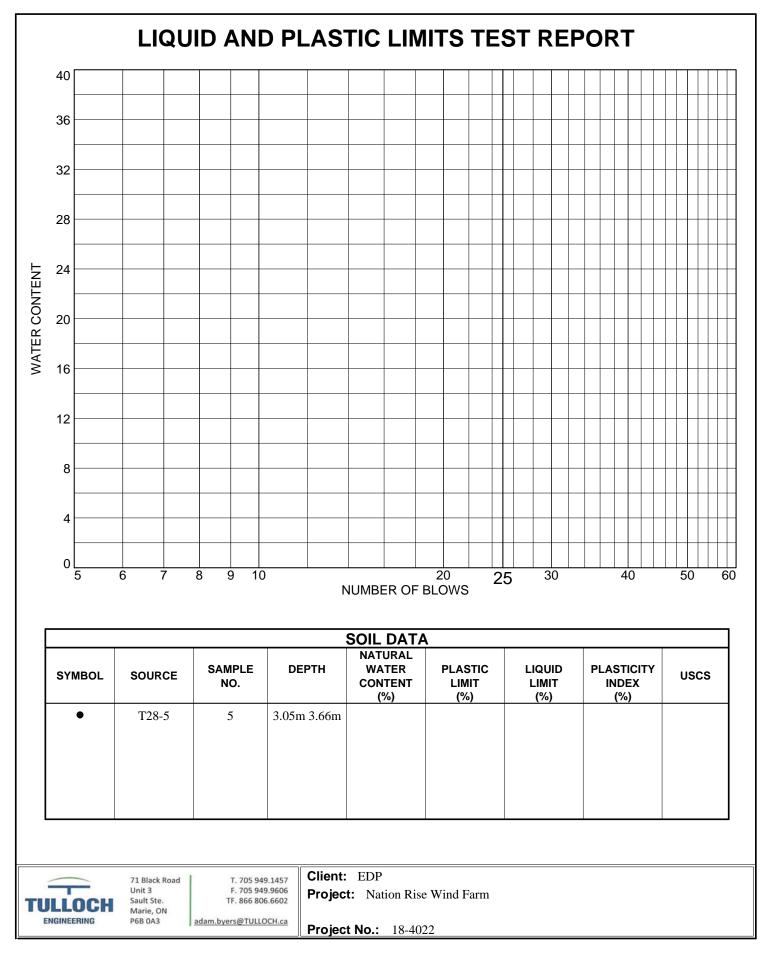
6


5

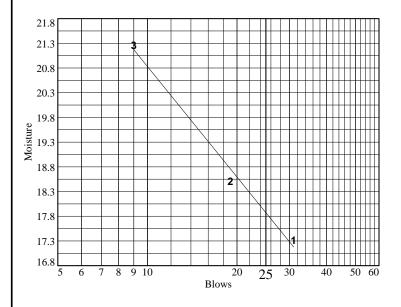
Plastic Limit Data


Run No.	1	2	3	4
Wet+Tare	19.41	19.61		
Dry+Tare	18.45	18.61		
Tare	13.74	13.75		
Moisture	20.4	20.6		



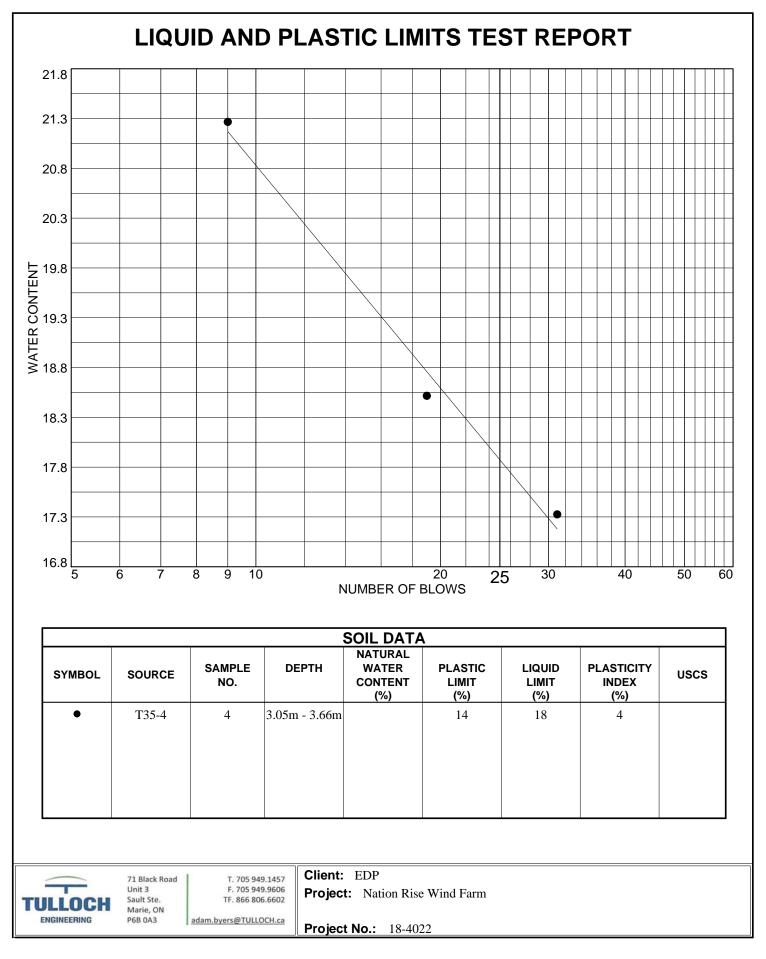

	4m - 15.85m S.Hoffman		Sample Number: 13 Checked by: S.Hoffman							
			Liquid Limit Da	ata						
Run No.	1	2	3	4	5	6				
Vet+Tare	37.05	27.56	37.25							
Dry+Tare	34.57	25.99	34.30							
Tare	13.74	13.87	13.73							
# Blows Moisture	<u> </u>	16 13.0	10 14.3							
14.4 14 13.6 13.2 12.8 12.4 12 11.6 11.2 5	7 8 9 10	2 2 2 2 2 2 2 30 25 30 Blows			Plastic L Plasticity In Natural Moist Liquidity In	dex=2 ture=7.0				
			Plastic Limit Da	ata						
Duna Ma	1	2	3	4						
	29.87	23.81 22.94								
Run No. Vet+Tare Drv+Tare	/ 8 411	<i>LL.)</i> T								
	28.40 13.61	13.90								

Fested by: S	n - 8.23m S.Hoffman	Sample Number: 8 Checked by: S.Hoffman								
			Liquid Limit Da	ita						
Run No.	1	2	3	4	5	6				
Wet+Tare	32.52	27.51	33.35							
Dry+Tare Tare	25.44 13.71	22.21 13.68	25.55 13.76							
# Blows	37	27	16							
Moisture	60.4	62.1	66.2							
69					Liquid	Limit= <u>63</u>				
68					Plastic					
67					Plasticity I					
66		3			Natural Moi					
00					Liquidity I	ndex=0.5				
e 65										
europaintsi 64										
й 63										
03										
62		2								
61										
60			4							
59	7 8 9 10	20 25 30	40 50 60							
		Blows								
			Plastic Limit Da	ata						
Due No.		2								
Run No. Wet+Tare	1 25.01	2 20.24	3	4						
Dry+Tare	23.09	19.23								
Tare	15.10	14.88								
Moisture	24.0	23.2								

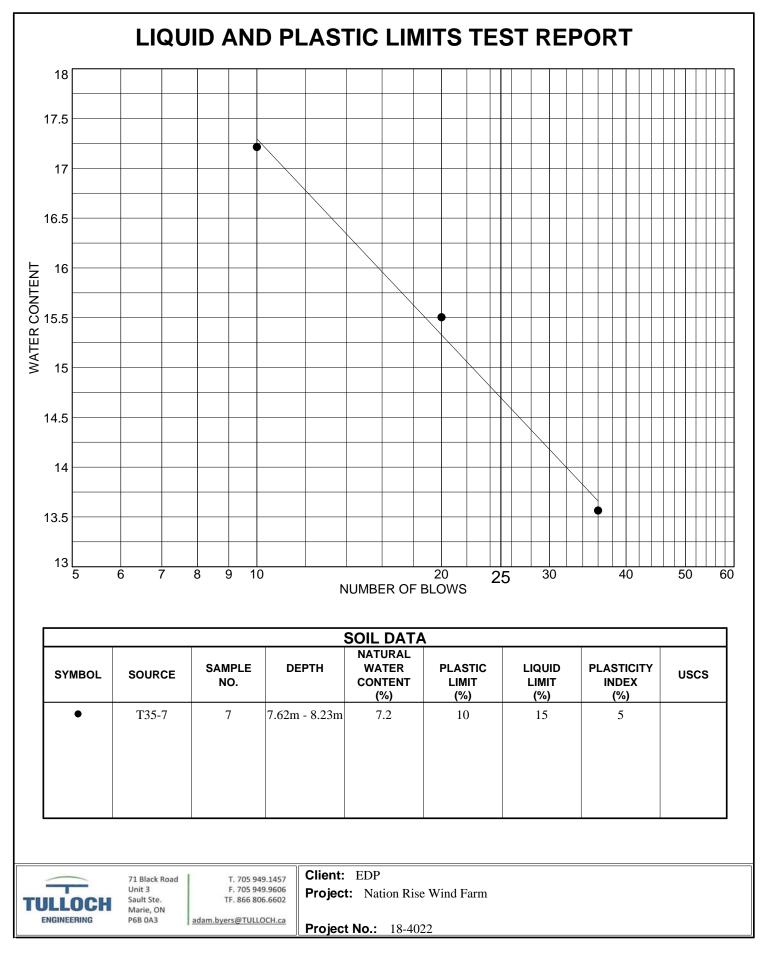


Client: EDP Project: Nation Rise Wind Farm Project Number: 18-4022 Location: T35-4 Depth: 3.05m - 3.66m Tested by: S.Hoffman

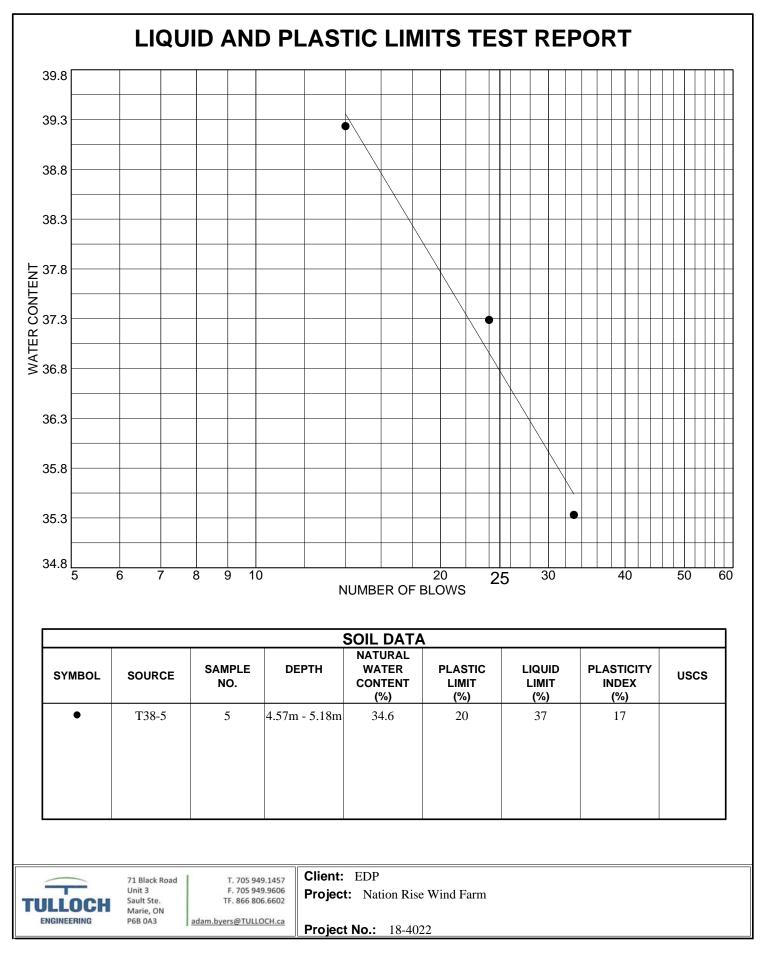
Sample Number: 4 Checked by: S.Hoffman

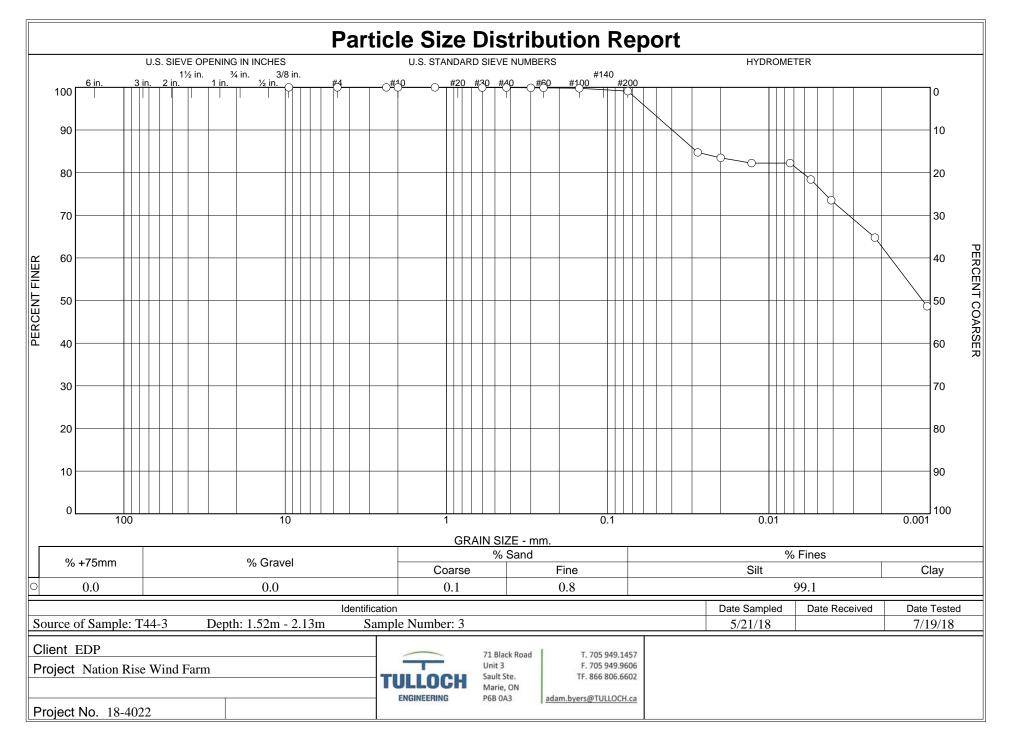

		-	-		_	
Run No.	1	2	3	4	5	6
Wet+Tare	32.55	30.82	29.31			
Dry+Tare	29.79	28.15	26.59			
Tare	13.86	13.73	13.80			
# Blows	31	19	9			
Moisture	17.3	18.5	21.3			

iquid Limit Data

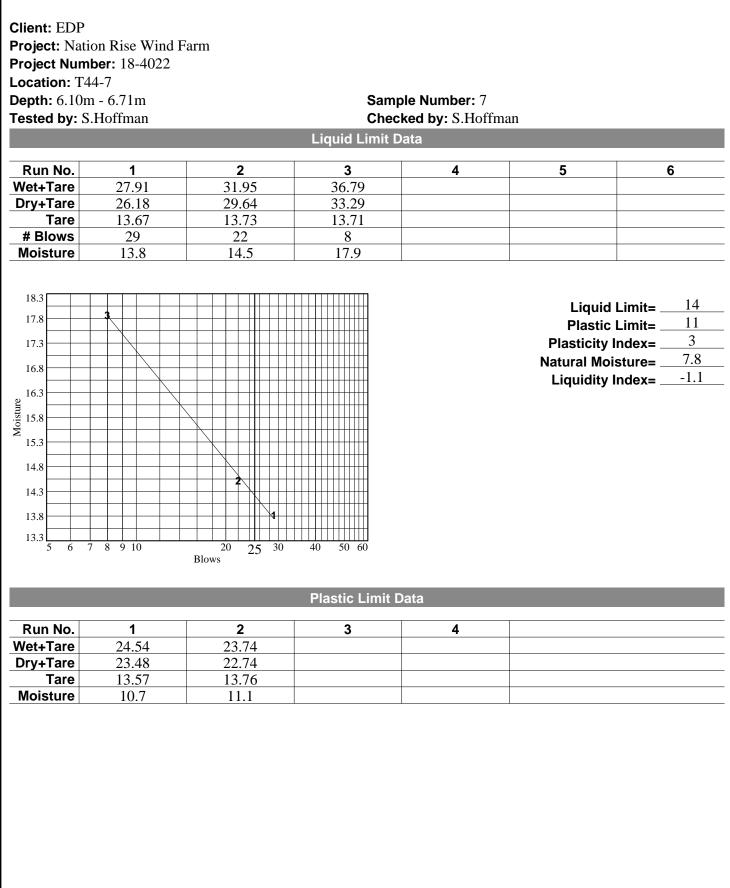


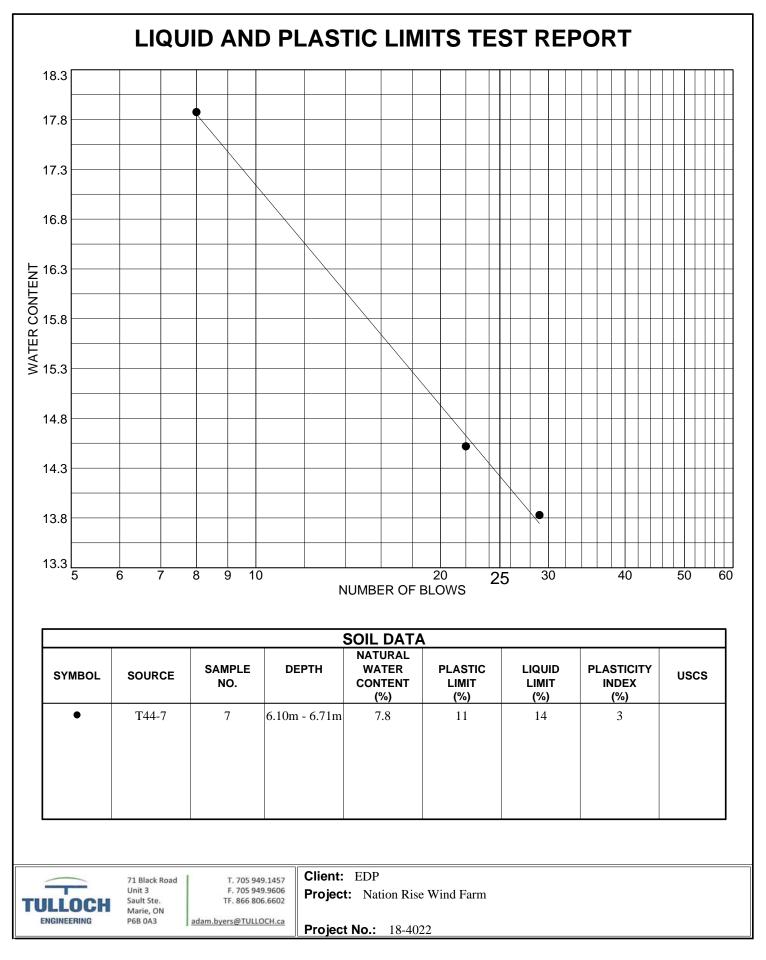
Liquid Limit=	18
Plastic Limit=	14
Plasticity Index=	4

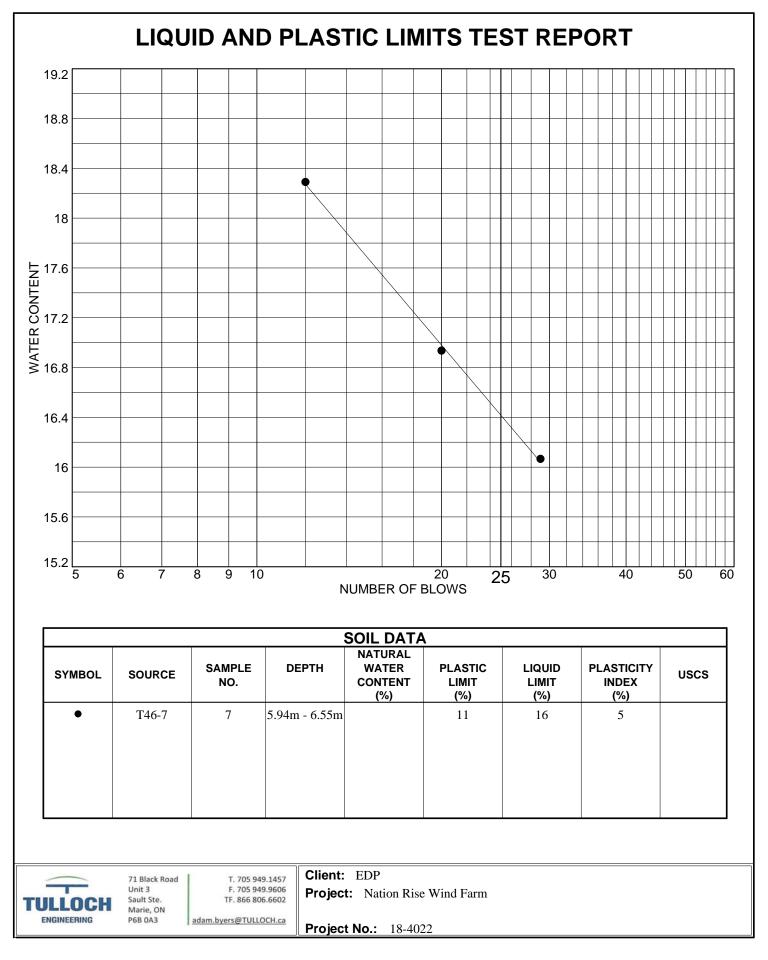

				Jala	
Run No.	1	2	3	4	
Wet+Tare	22.08	21.54			
Dry+Tare	21.08	20.62			
Tare	13.75	13.75			
Moisture	13.6	13.4			



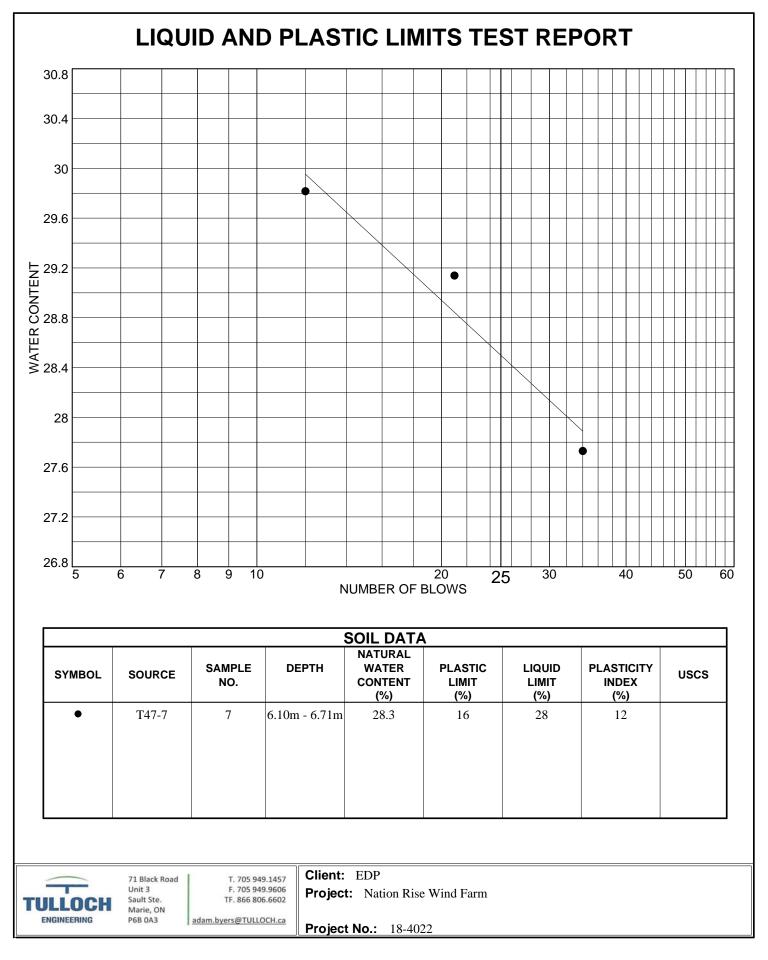
epth: 7.62m ested by: S.				e Number: 7 ed by: S.Hoffm	nan	
			Liquid Limit Da	ita		
Run No.	1	2	3	4	5	6
Net+Tare	31.72	35.96	36.50			
Dry+Tare	29.57	32.98	33.15			
Tare # Blows	<u>13.72</u> 36	13.76 20	13.69 10			
# blows Moisture	13.6	15.5	17.2			
17.5 17 16.5 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 16.5 16 17 16.5 16 17 16.5 16 17 16.5 16 17 16.5 16 17 16.5 16 17 16.5 14 13.5 13 5 6 7	8 9 10	20 25 30 Blows			Plastic L Plasticity In Natural Mois Liquidity In	1 dex= 5 ture=7.2
			Plastic Limit Da	ata		
Run No.	1	2	3	4		
Net+Tare	23.57	24.68				
Dry+Tare	22.72	23.73				
Tare Moisture	<u>13.74</u> 9.5	13.91 9.7				
Moisture	7.J	7.1				

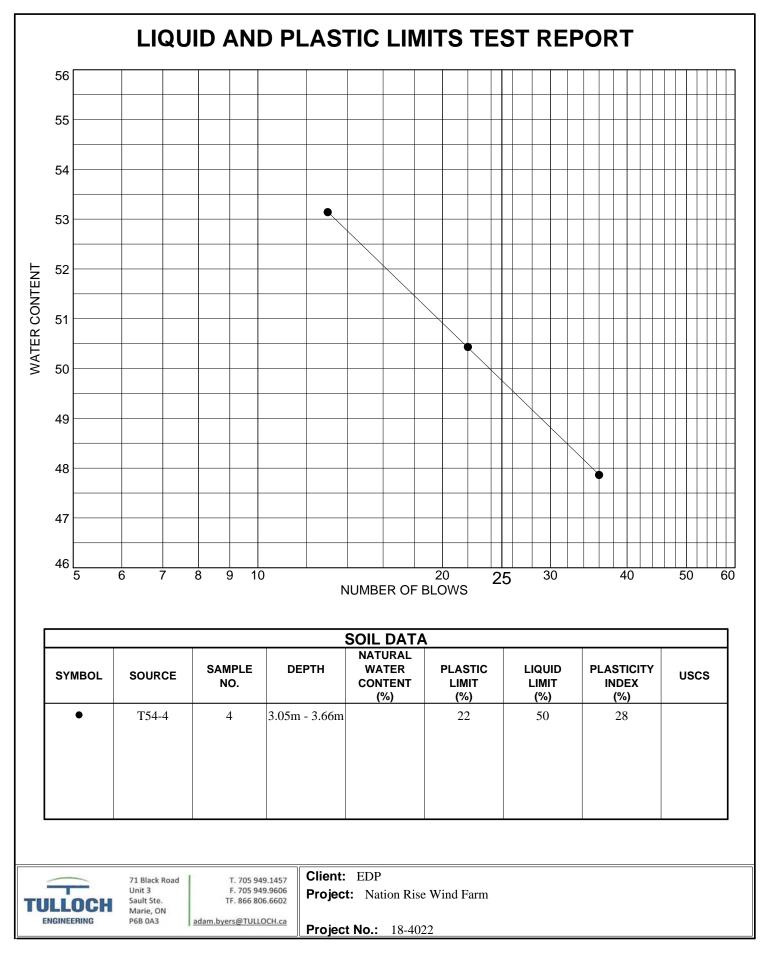


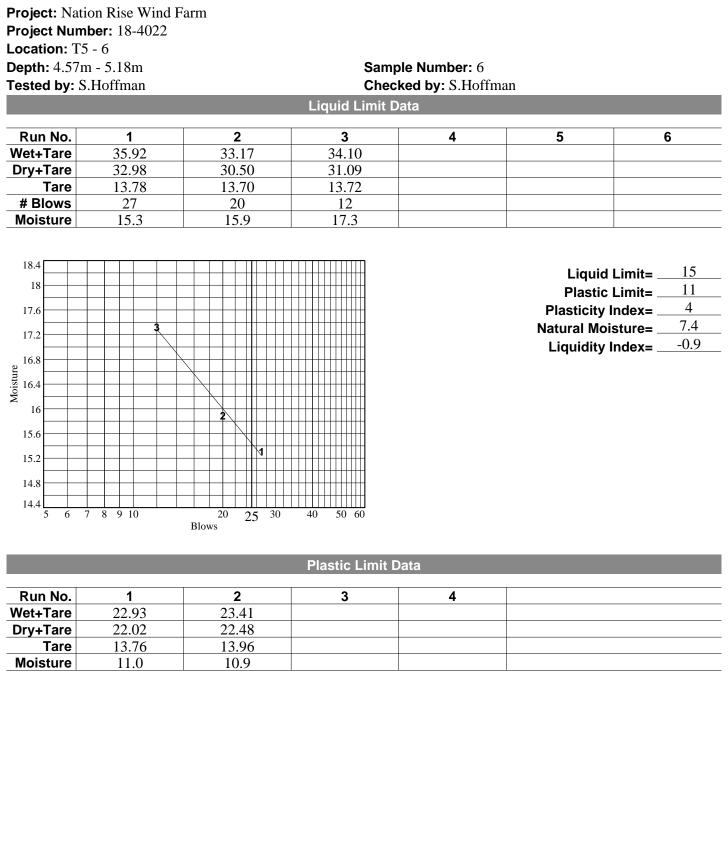

Client: EDP **Project:** Nation Rise Wind Farm Project Number: 18-4022 Location: T38-5 **Depth:** 4.57m - 5.18m Sample Number: 5 Tested by: S.Hoffman Checked by: S.Hoffman Liquid Limit Data Run No. 1 2 3 4 5 6 Wet+Tare 34.38 30.46 30.01 Dry+Tare 29.31 26.28 25.71 Tare 14.96 15.07 14.75 # Blows 33 24 14 Moisture 35.3 37.3 39.2 39.8 37 Liquid Limit= 39.3 20 Plastic Limit= _ 17 Plasticity Index= _ 38.8 34.6 Natural Moisture= 38.3 0.9 Liquidity Index= _ 37.8 Moisture 37.3 36.8 36.3 35.8 35.3 34.8 5 6 7 8 9 10 20 25 30 40 50 60 Blows **Plastic Limit Data** Run No. 1 2 3 4 Wet+Tare 23.89 24.39 Dry+Tare 22.41 22.79 Tare 14.92 15.00 Moisture 19.8 20.5

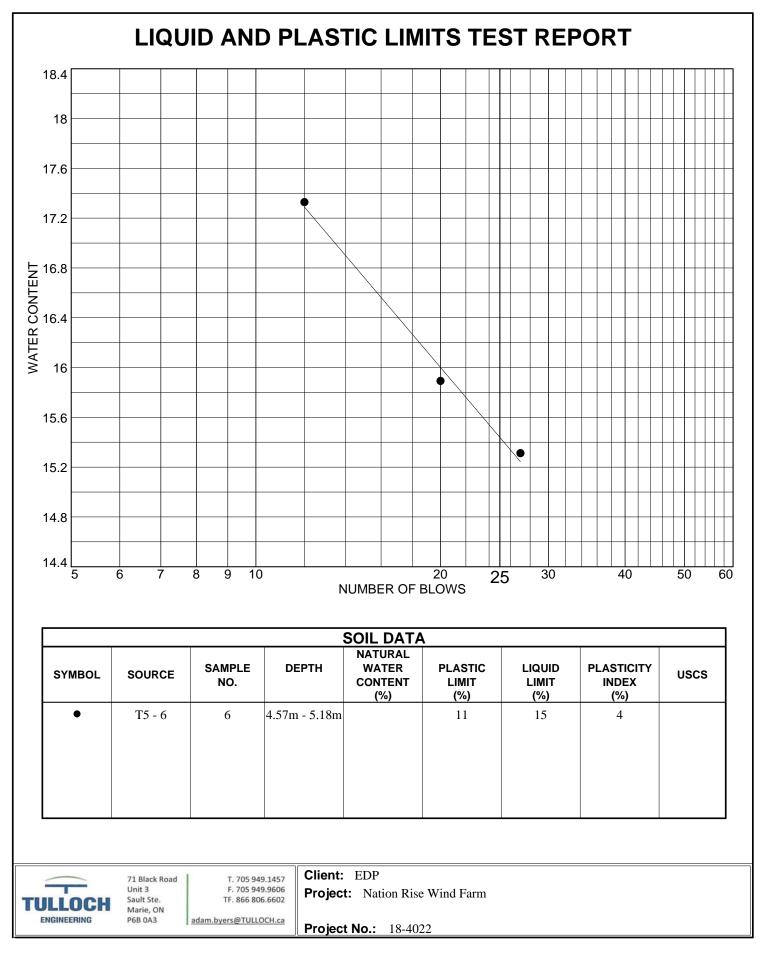


Tested By: T.Linley

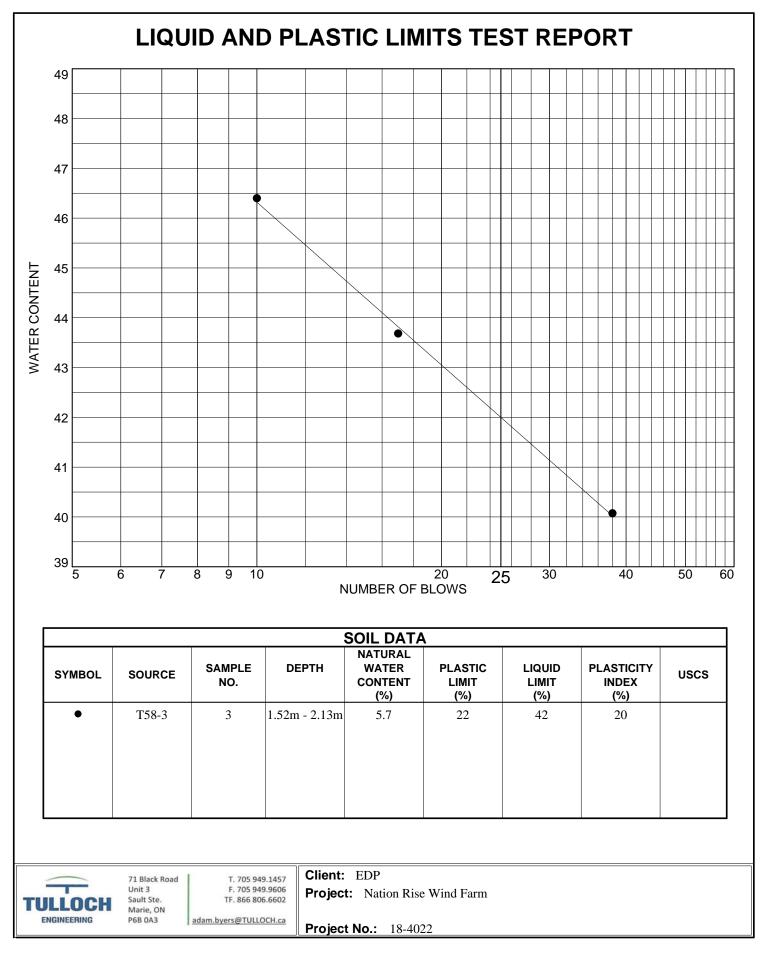



ested by:	m - 6.55m S.Hoffman		Sample Number: 7 Checked by: S.Hoffman						
			Liquid Limit Da						
Run No. Wet+Tare	1 31.77	2 30.35	3 27.46	4	5	6			
Dry+Tare	29.27	27.94	25.32						
Tare	13.71	13.71	13.62						
# Blows	29	20	12						
Moisture	16.1	16.9	18.3						
19.2					Liquid L				
18.8					Plastic L				
18.4	3				Plasticity Ir				
18					Natural Mois				
17.6					Liquidity Ir	ndex=0.7			
17.0									
17.2									
16.8									
16.4									
16									
15.6									
15.2	7 8 9 10	20 25 30	40 50 60						
		Blows							
			Plastic Limit Da	ata					
	1	2	3	4					
Run No.									
	26.11	31.10							
Vet+Tare Dry+Tare	26.11 24.94	29.46							
Run No. Wet+Tare Dry+Tare Tare Moisture	26.11								

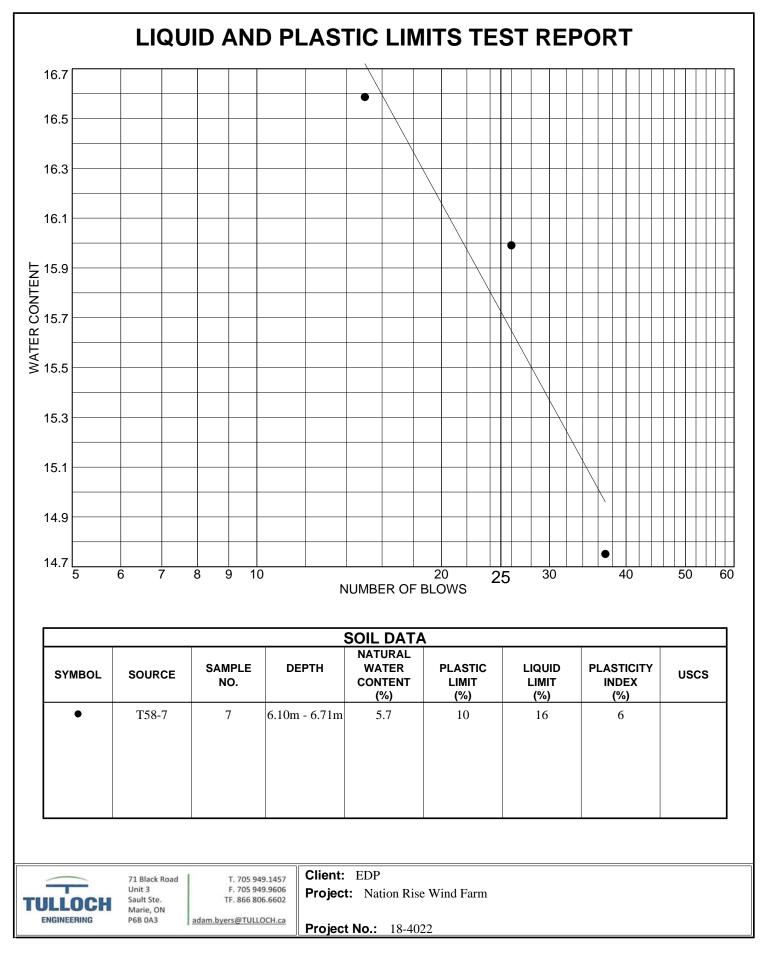

ested by: S	n - 6.71m .Hoffman		Sample Number: 7 Checked by: S.Hoffman							
			Liquid Limit D	ata						
Run No.	1	2	3	4	5	6				
Net+Tare Dry+Tare	<u>30.19</u> 26.66	29.20 25.68	29.93 26.20							
Tare	13.93	13.60	13.69							
# Blows	34	21	12							
Moisture	27.7	29.1	29.8							
30.8	3	2 2 2 2 2 2 2 2 2 30 8 10ws				isture=				
			Plastic Limit D	ata						
Run No.	1	2	3	4						
Net+Tare	23.96	23.60								
Dry+Tare Tare	22.49 13.64	22.24 13.66								
	16.6	15.9								

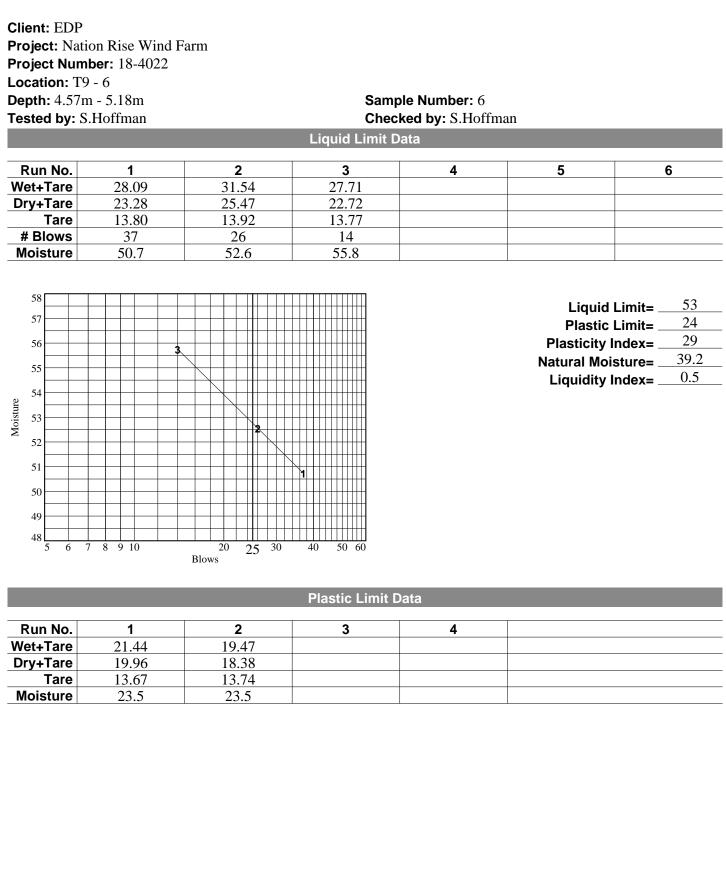


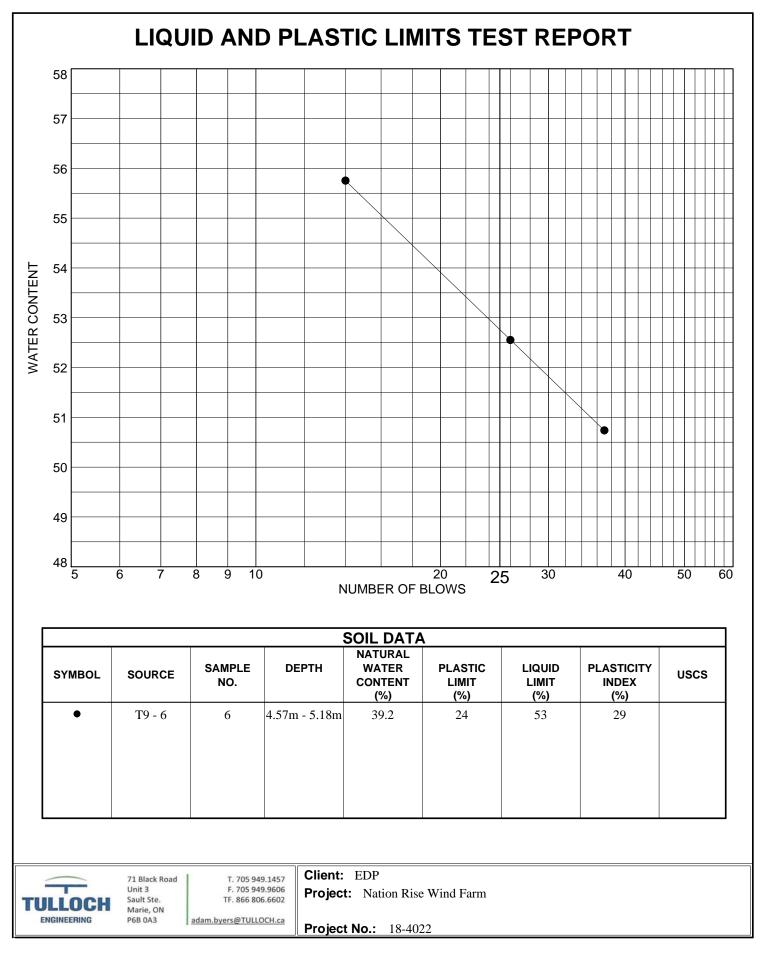
epth: 3.05n ested by: S			Checked by: S.Hoffman Liquid Limit Data						
Run No.			5	6					
Vet+Tare	28.08	27.64	26.41	-					
Dry+Tare	23.49	22.98	22.01						
Tare	13.90	13.74 22	13.73						
# Blows Moisture	<u> </u>	50.4	13 53.1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 8 9 10	20 25 30 Blows			Plasticity	Index= 28			
			Plastic Limit D	ata					
Run No. Vet+Tare Dry+Tare Tare	1 20.14 19.14 14.69 22.5	2 20.29 19.30 14.86 22.3	3	4					



Client: EDP






	.Hoffman		Checl Liquid Limit D	ked by: S.Hoffn ata	nan	
Run No.	1	2	3	4	5	6
Vet+Tare	32.47	34.30	32.07		5	0
Dry+Tare	27.12	28.11	26.27			
Tare	13.77	13.94	13.77			
# Blows	38	17	10			
Noisture	40.1	43.7	46.4			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 4 4 4 4 4 4 4 4 4 4	20 25 30 Blows			-	sture= <u>5.7</u>
			Plastic Limit D	ata		
Run No.	1	2	3	4		
let+Tare	21.08	21.08				
ory+Tare Tare	<u>19.96</u> 14.76	19.96 14.89				
Noisture	21.5	22.1				

esteu by. J.	Draper		Check Liquid Limit Da	ed by: S.Hoffn ita	nan	
Run No.	1	2	3	4 5		
Net+Tare	23.45	23.87	26.60		5	6
Dry+Tare	22.07	22.49	24.97			
Tare	13.75	13.86	13.92			
# Blows	15	26	37			
Moisture	16.6	16.0	14.8			
16.7		1			Liquid	Limit= <u>16</u>
16.5						Limit=10
16.3					Plasticity	Index= 6
16.1					Natural Mo	
		2			Liquidity	Index=
15.9						
15.7						
15.5						
15.3						
15.1						
14.9						
14.7	8 9 10	20 25 30	40 50 60			
		Blows				
			Plastic Limit Da	ata		
	1	2	3	4		
Run No.						
Vet+Tare	20.27	19.76				
Run No. Vet+Tare Dry+Tare Tare		19.76 19.21 13.76				

Grain Size Distribution

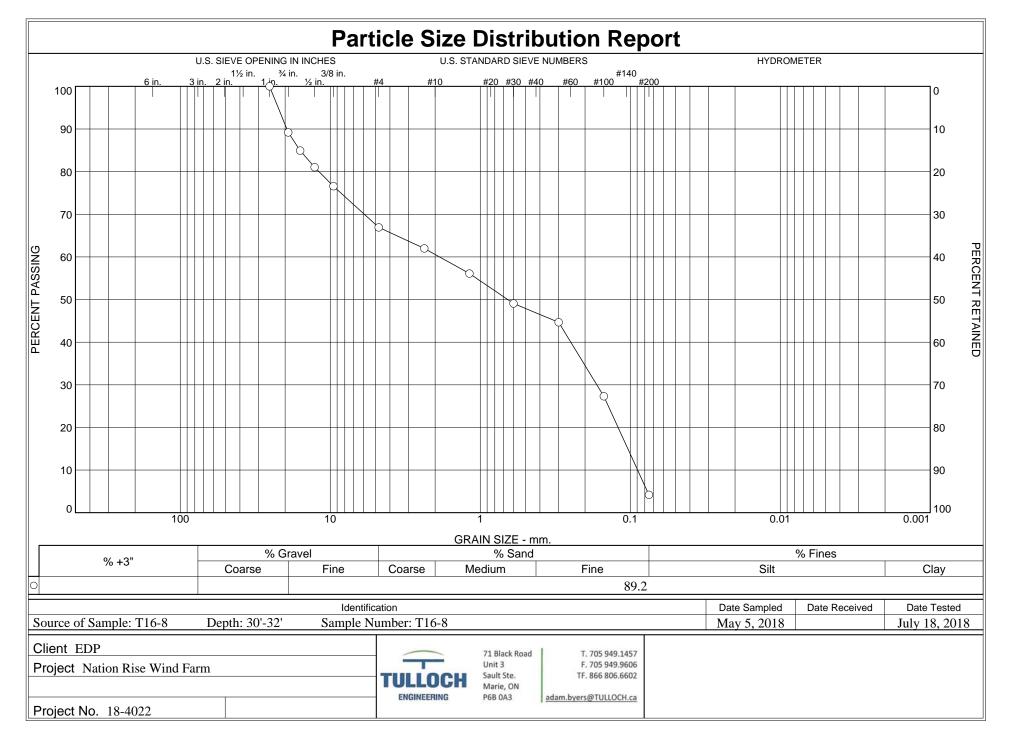
GRAIN SIZE DISTRIBUTION TEST DATA

Client: EDP Project: Nation Rise Wind Farm Project Number: 18-4022 Location: T16-8 Depth: 30'-32' Date Sampled: May 5, 2018

Depth: 30-32Date Sampled: May 5, 2018Date Tested: JulyTested by: T. Nott

Sample Number: T16-8 Date Tested: July 18, 2018

Checked by: T. Linley Sieve Test Data


Sieve Test Data									
Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained				
0.00	0.00	1"	0.00	100.0	0.0				
		3/4"	67.10	89.2	10.8				
		5/8"	93.60	84.9	15.1				
		1/2"	117.90	81.0	19.0				
		3/8"	145.50	76.6	23.4				
		#4	205.50	66.9	33.1				
		#8	236.20	62.0	38.0				
		#16	272.80	56.1	43.9				
		#30	316.40	49.1	50.9				
		#50	343.80	44.7	55.3				
		#100	451.60	27.3	72.7				
		#200	595.30	4.2	95.8				
	(grams)	Pan Tare Tare Weight (grams) (grams)	Cumulative Pan Tare Weight (grams) Sieve Opening Size 0.00 0.00 1" 3/4" 3/4" 5/8" 1/2" 3/8" #4 #8 #16 #30 #50 #100 ************************************	Cumulative Pan Tare Weight (grams) Sieve Opening Size Cumulative Weight Retained (grams) 0.00 0.00 1" 0.00 3/4" 67.10 5/8" 93.60 1/2" 117.90 3/8" 145.50 #4 205.50 #4 205.50 #8 236.20 #16 272.80 #30 316.40 #50 343.80 #100 451.60 ************************************	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

Fractional Components

Cabbles	Gravel				Sa	nd		Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	10.8	22.3	33.1	6.3	13.7	42.7	62.7			4.2

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0769	0.0893	0.1037	0.1205	0.1670	0.2490	0.6560	1.8689	11.8854	15.9193	19.4603	22.2327

Fineness Modulus	c _u	Cc		
3.28	20.93	0.17		

Tested By: T. Nott

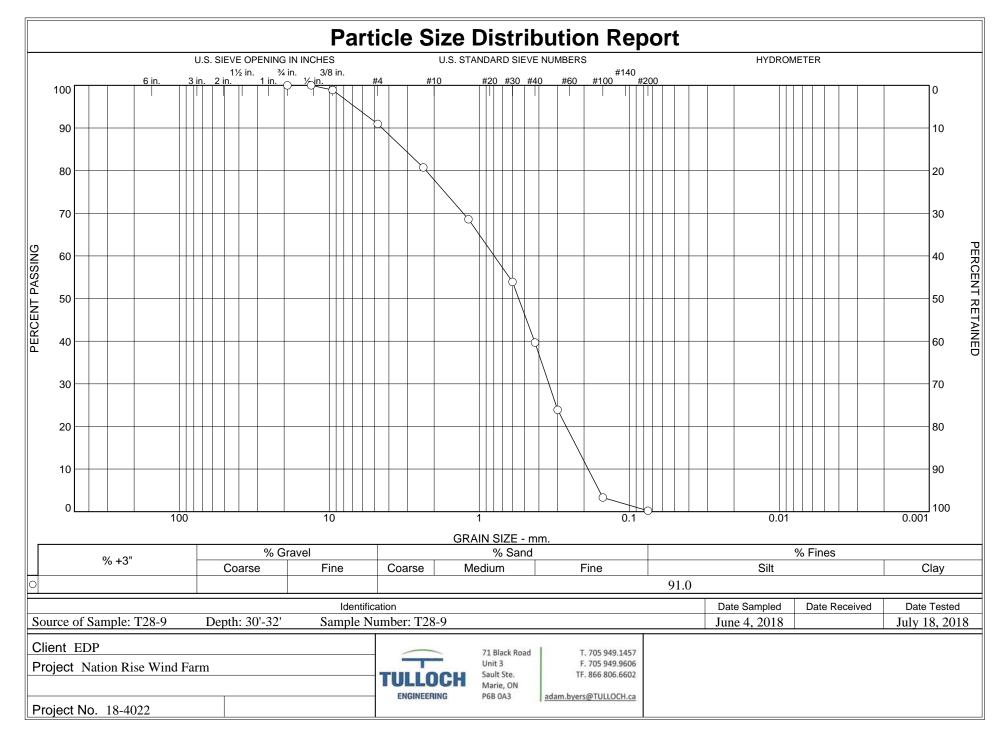
Checked By: T. Linley

7/20/2018

Client: EDP Project: Nation Rise Wind Farm Project Number: 18-4022 Location: T28-9 Depth: 30'-32' Material Description: T28-9 Date Sampled: June 4, 2018

Tested by: T. Nott

Sample Number: T28-9


Date Tested: July 18, 2018

· · · · · · · · · · · · · · · · · · ·				,			
			Sieve 1	est Data			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
129.30	0.00	0.00	19mm.	0.00	100.0	0.0	
			13.2mm.	0.00	100.0	0.0	
			9.5mm.	1.40	98.9	1.1	
			#4	11.70	91.0	9.0	
			#8	24.90	80.7	19.3	
			#16	40.60	68.6	31.4	
			#30	59.60	53.9	46.1	
			#40	78.00	39.7	60.3	
			#50	98.40	23.9	76.1	
			#100	125.00	3.3	96.7	
			#200	129.00	0.2	99.8	
			Fractional	Components			

Cobbles	Gravel				Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	9.0	9.0	13.2	38.1	39.5	90.8			0.2

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.1587	0.1878	0.2223	0.2631	0.3433	0.4284	0.5458	0.7943	2.2621	3.1594	4.4503	6.7560

Fineness Modulus	Cu	C _c
2.80	4.23	0.79

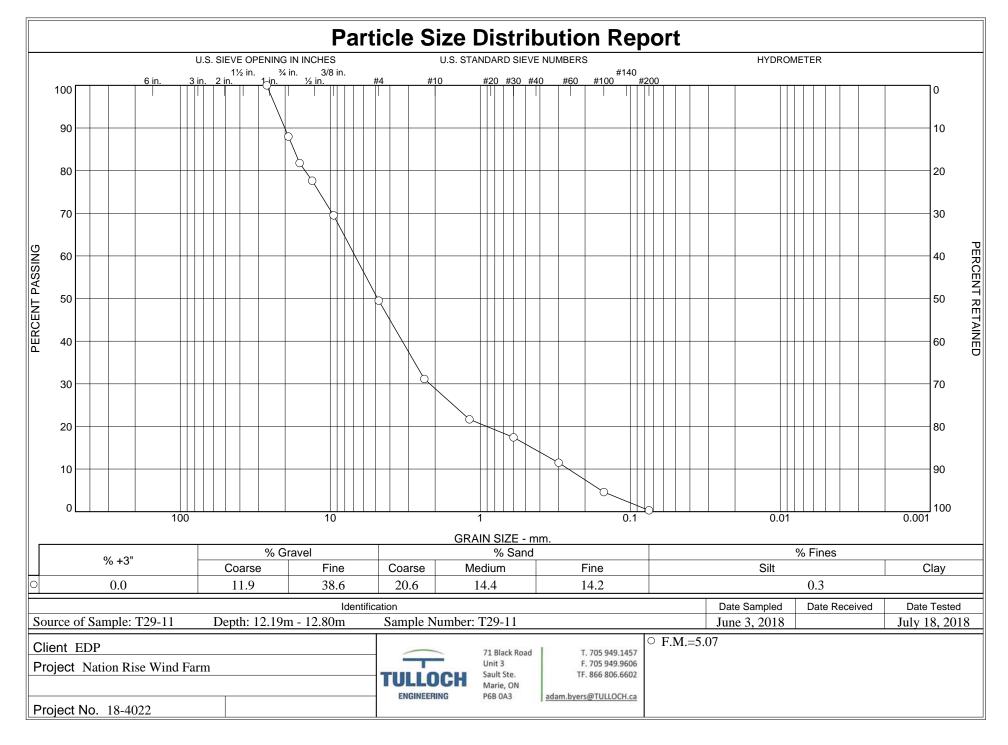
Tested By: T. Nott

Checked By: T. Linley

7/20/2018

Client: EDP Project: Nation Rise Wind Farm Project Number: 18-4022 Location: T29-11 Depth: 12.19m - 12.80m Material Description: T29-11 Date Sampled: June 3, 2018

Sample Number: T29-11


Date Tested: July 18, 2018

est Data Cumulative Weight Retained (grams) 0.00 82.90 125.70 154.40	Percent Finer 100.0 88.0 81.8	Percent Retained 0.0 12.0 18.2
Weight Retained (grams) 0.00 82.90 125.70	Finer 100.0 88.0 81.8	Retained 0.0 12.0
82.90 125.70	88.0 81.8	12.0
125.70	81.8	
		18.2
154.40		
134.40	77.6	22.4
210.50	69.5	30.5
348.60	49.5	50.5
475.30	31.1	68.9
540.80	21.7	78.3
569.90	17.4	82.6
611.00	11.5	88.5
658.50	4.6	95.4
688.10	0.3	99.7
	348.60 475.30 540.80 569.90 611.00 658.50	348.6049.5475.3031.1540.8021.7569.9017.4611.0011.5658.504.6688.100.3

Cabbles	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	11.9	38.6	50.5	20.6	14.4	14.2	49.2			0.3

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.1561	0.2582	0.4515	0.9045	2.1705	3.3072	4.8330	6.8342	14.7279	17.4885	20.0876	23.0721

Fineness Modulus	c _u	Cc
5.07	26.46	2.67

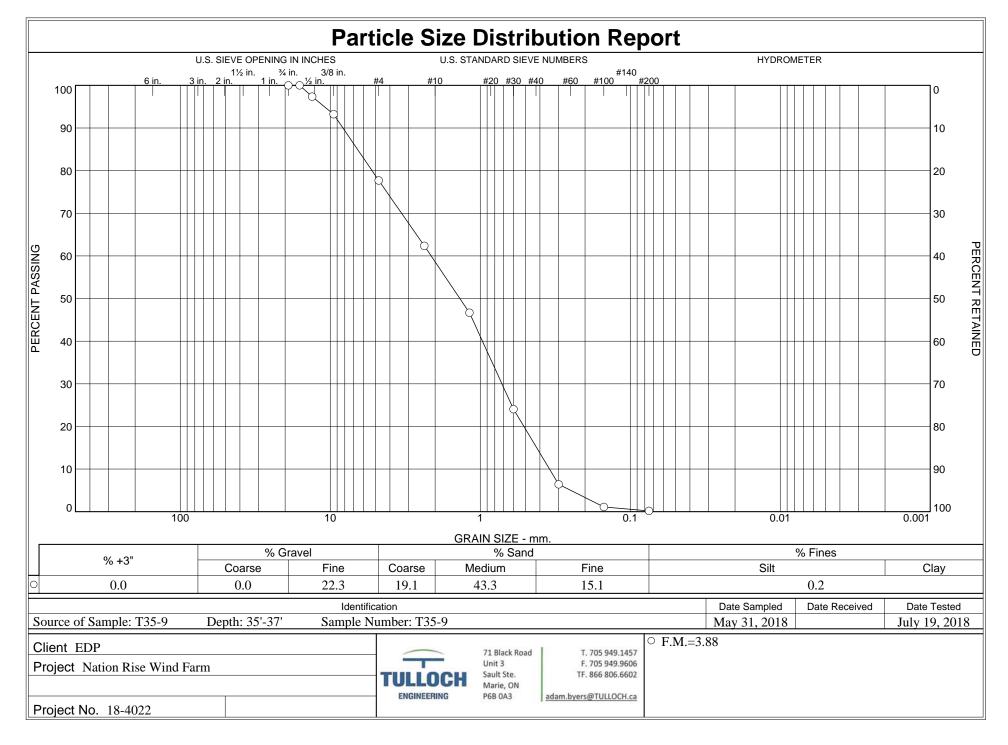
Checked By: T. Linley

7/20/2018

Client: EDP Project: Nation Rise Wind Farm Project Number: 18-4022 Location: T35-9 Depth: 35'-37' Material Description: T35-9

Date Sampled: May 31, 2018 **Tested by:** T. Nott Sample Number: T35-9

Date Tested: July 19, 2018


Checked b	y: T. Linley
-----------	---------------------

			Sieve 1	est Data			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
321.80	0.00	0.00	19.0mm.	0.00	100.0	0.0	
			16.0mm.	0.00	100.0	0.0	
			13.2mm.	8.50	97.4	2.6	
			9.5mm.	21.80	93.2	6.8	
			#4	71.80	77.7	22.3	
			#8	121.10	62.4	37.6	
			#16	171.60	46.7	53.3	
			#30	244.40	24.1	75.9	
			#50	301.10	6.4	93.6	
			#100	318.20	1.1	98.9	
			#200	321.20	0.2	99.8	
			Fractional	Components			

Cabbles	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	22.3	22.3	19.1	43.3	15.1	77.5			0.2

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.2489	0.3452	0.4202	0.5116	0.7168	0.9665	1.3667	2.1256	5.2661	6.5820	8.2268	10.9409

Fineness Modulus	Cu	Cc		
3.88	6.16	0.70		

7/20/2018

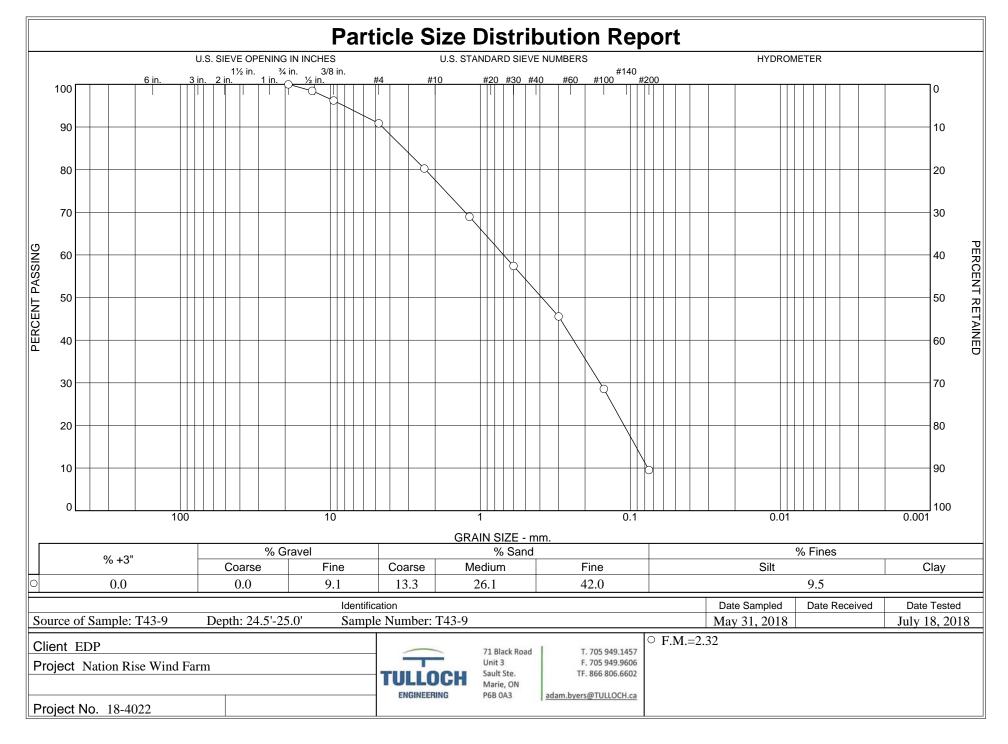
Client: EDP Project: Nation Rise Wind Farm Project Number: 18-4022 Location: T43-9 Depth: 24.5'-25.0' Material Description: T43-9

Date Sampled: May 31, 2018 Tested by: T. Nott

Dry

Sample Number: T43-9

Date Tested: July 18, 2018


	Checked by: T. Link	ey			
Sieve Test Data					
Cumulative Pan	Cumulative Sieve Weight				

Sample and Tare (grams)	Tare (grams)	Pan Tare Weight (grams)	Sieve Opening Size	Weight Retained (grams)	Percent Finer	Percent Retained	
321.70	0.00	0.00	19mm.	0.00	100.0	0.0	
			13.2mm.	4.90	98.5	1.5	
			9.5mm.	12.20	96.2	3.8	
			#4	29.40	90.9	9.1	
			#8	63.50	80.3	19.7	
			#16	99.90	68.9	31.1	
			#30	137.00	57.4	42.6	
			#50	175.10	45.6	54.4	
			#100	229.80	28.6	71.4	
			#200	291.00	9.5	90.5	
			Fractional	Components			

Cabbles		Gravel			Sa	nd		Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	9.1	9.1	13.3	26.1	42.0	81.4			9.5	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0763	0.0915	0.1098	0.1590	0.2391	0.3888	0.6983	2.3226	3.2264	4.4876	8.1232

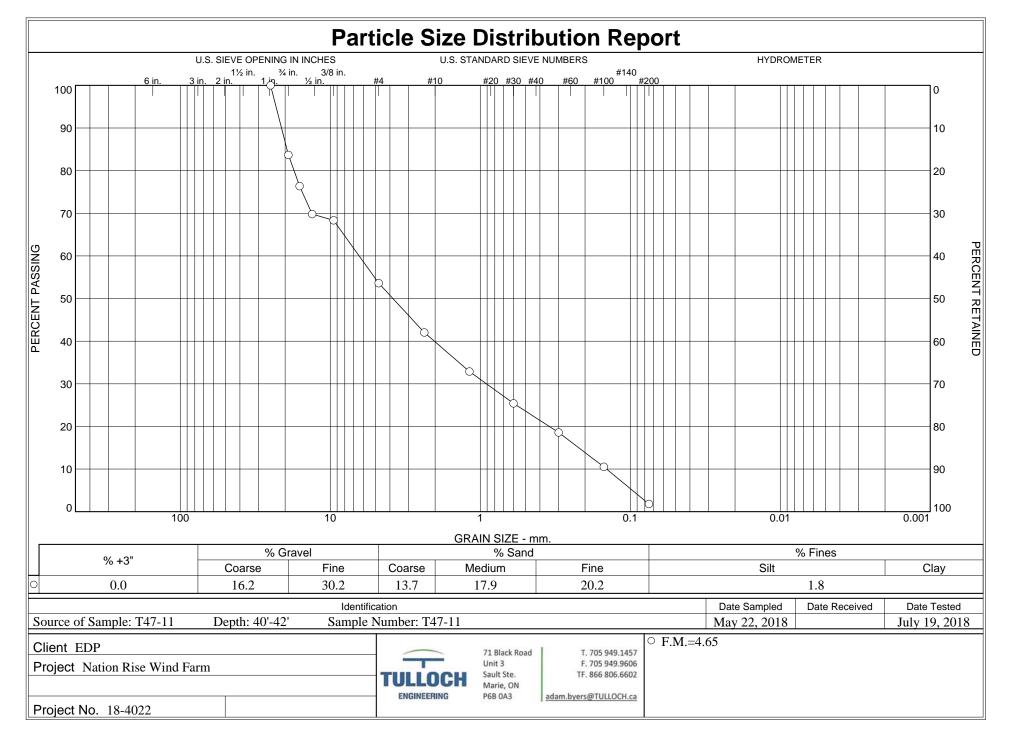
Fineness Modulus	c _u	Cc
2.32	9.16	0.47

7/20/2018

Client: EDP **Project:** Nation Rise Wind Farm Project Number: 18-4022 Location: T47-11 **Depth:** 40'-42' Material Description: T47-11

Sample Number: T47-11

Date Sampled: May 22, 2018Date Tested: July 19, 2018


Checked by: T. Linley

sted by: T	. Nott		0. 7	Checked by:	T. Linley		
			Sieve T	est Data			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
270.70	0.00	0.00	25mm.	0.00	100.0	0.0	
			19mm.	44.20	83.7	16.3	
			16.0mm.	64.00	76.4	23.6	
			13.2mm.	81.70	69.8	30.2	
			9.5mm.	85.70	68.3	31.7	
			#4	125.60	53.6	46.4	
			#8	156.90	42.0	58.0	
			#16	181.70	32.9	67.1	
			#30	201.90	25.4	74.6	
			#50	220.40	18.6	81.4	
			#100	242.20	10.5	89.5	
			#200	265.80	1.8	98.2	

Cabbles		Gravel			Sand			Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	16.2	30.2	46.4	13.7	17.9	20.2	51.8			1.8	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0967	0.1438	0.2204	0.3464	0.9091	2.0226	3.8200	6.4175	17.4295	19.4289	21.1322	22.9849

Fineness Modulus	c _u	С _с		
4.65	44.62	0.90		

Tested By: T. Nott

Checked By: T. Linley

7/20/2018

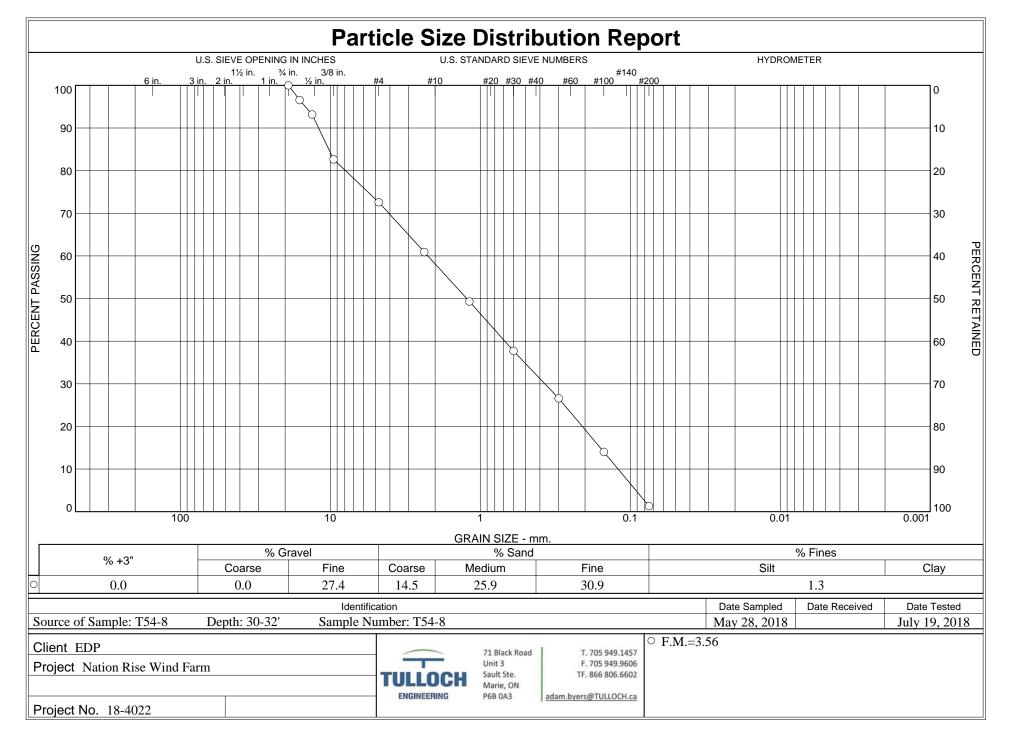
Client: EDP Project: Nation Rise Wind Farm Project Number: 18-4022 Location: T54-8 Depth: 30-32' Material Description: T54-8

Date Sampled: May 28, 2018

Tested by: T. Nott

Sample Number: T54-8

Date Tested: July 19, 2018


Checked	by:	T. Linley
---------	-----	-----------

			Sieve 7	est Data			
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
345.80	0.00	0.00	19mm.	0.00	100.0	0.0	
			16.0mm.	11.90	96.6	3.4	
			13.2mm.	23.60	93.2	6.8	
			9.5mm.	60.00	82.6	17.4	
			#4	94.80	72.6	27.4	
			#8	135.20	60.9	39.1	
			#16	175.30	49.3	50.7	
			#30	215.40	37.7	62.3	
			#50	253.80	26.6	73.4	
			#100	297.30	14.0	86.0	
			#200	341.20	1.3	98.7	
			Fractional	Components			

Cabbles	Gravel				Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	27.4	27.4	14.5	25.9	30.9	71.3			1.3

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0916	0.1204	0.1583	0.2085	0.3708	0.6857	1.2300	2.2361	7.9157	10.2242	11.9532	14.6431

Fineness Modulus	Cu	Cc
3.56	18.57	0.51

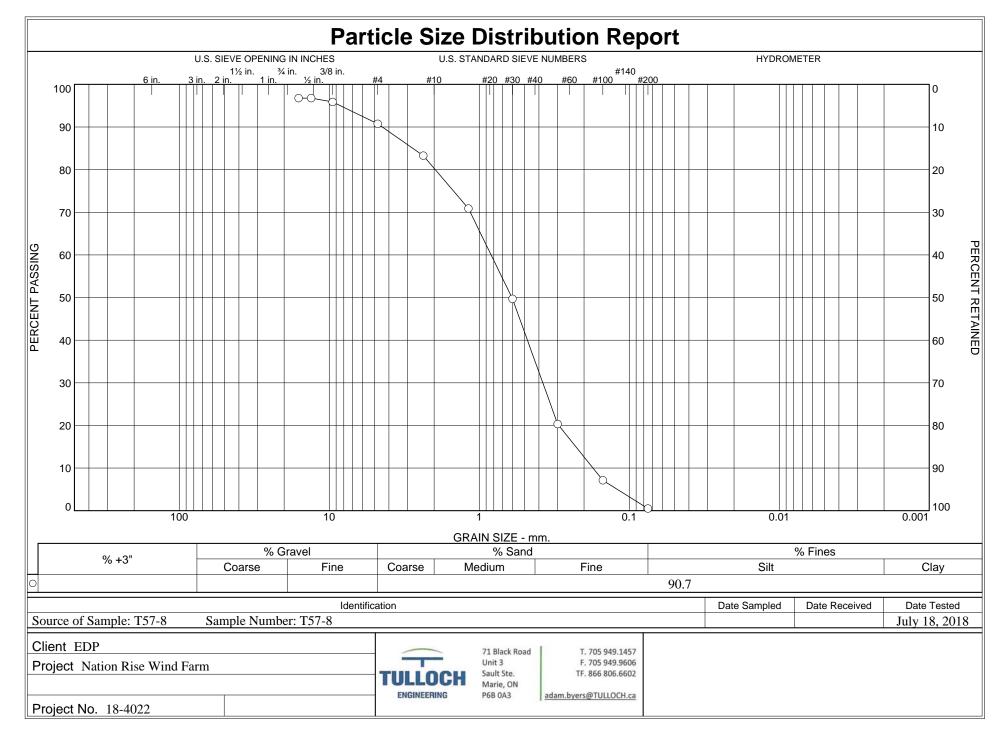
Tested By: T. Nott

Checked By: T. Linley

Client: EDP **Project:** Nation Rise Wind Farm Project Number: 18-4022 Location: T57-8 Sample Number: T57-8 Material Description: T57-8 Date Tested: July 18, 2018

Tested by: T. Nott

7/20/2018


T	-	I
Tulloch	Engineering	inc.

ested by: T	. Nott			Checked by:	T. Linley					
Sieve Test Data										
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained				
235.60	0.00	0.00	16.0mm.	7.60	96.8	3.2				
			13.2mm.	7.60	96.8	3.2				
			9.5mm.	9.70	95.9	4.1				
			#4	21.80	90.7	9.3				
			#8	39.40	83.3	16.7				
			#16	68.60	70.9	29.1				
			#30	118.50	49.7	50.3				
			#50	187.70	20.3	79.7				
			#100	218.80	7.1	92.9				
			#200	234.40	0.5	99.5				
			Fractional	Components						

Cabbles	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
				10.4	45.2	34.6	90.2			0.5

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.120	0 0.1744	0.2268	0.2948	0.3769	0.4772	0.6057	0.8336	1.9648	2.7732	4.4291	8.4329

Fineness Modulus	c _u	Cc		
2.82	4.78	0.98		

Client: EDP Project: Nation Rise Wind Farm Project Number: 18-4022 Location: T29-4 Depth: 2.29m-2.90m Date Sampled: 6/3/18

Sample Number: 4

Date Tested: 7/19/18

Tested by: T.Linley

_

Checked by: S.Hoffman Sieve Test Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained
319.80	0.00	9.5mm	0.00	0.00	100.0	0.0
		#4	0.00	0.00	100.0	0.0
		#8	0.00	0.00	100.0	0.0
		#10	0.00	0.00	100.0	0.0
		#16	0.00	0.00	100.0	0.0
		#30	0.00	0.00	100.0	0.0
		#40	0.00	0.00	100.0	0.0
		#50	0.00	0.00	100.0	0.0
		#60	0.10	0.00	100.0	0.0
		#100	1.40	0.00	99.5	0.5
		#200	18.70	0.00	93.7	6.3
			Hudrom	otor Toot Do	10	

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100.0

Weight of hydrometer sample =75.8

Automatic temperature correction

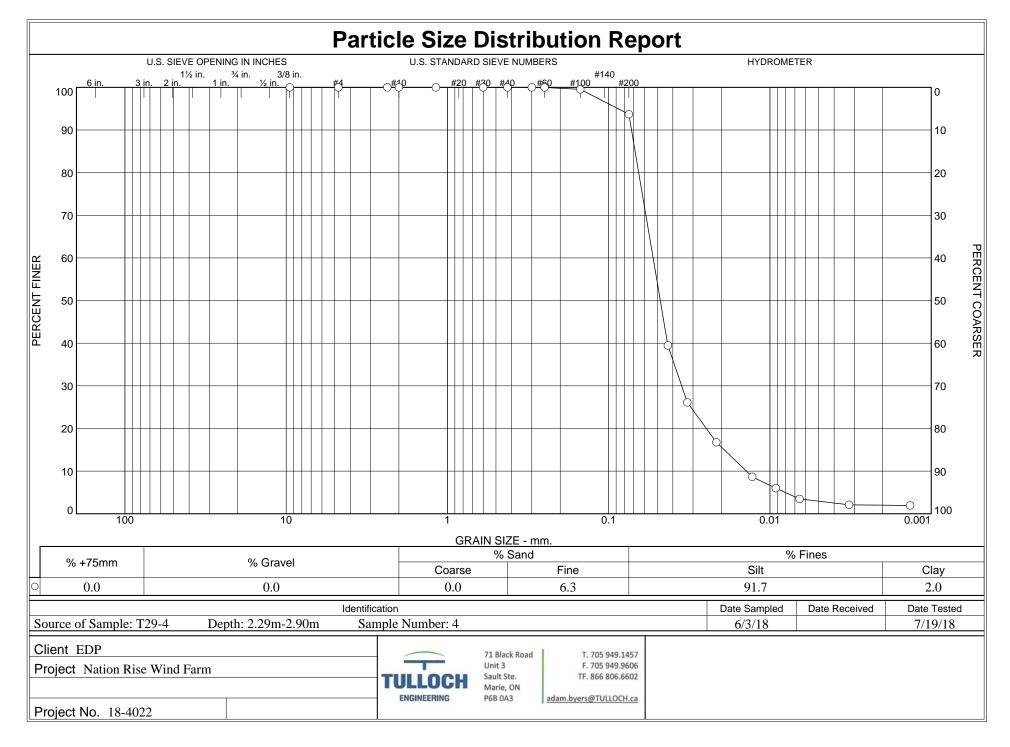
Composite correction (fluid density and meniscus height) at 20 deg. C = -5

Meniscus correction only = -1.0

Specific gravity of solids = 2.6

Hydrometer type = 152H

Hydrometer effective depth equation: $L = 16.294964 - 0.164 \times Rm$


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	25.8	33.0	29.6	0.0129	32.0	11.0	0.0430	39.5	60.5
2.00	25.8	23.0	19.6	0.0129	22.0	12.7	0.0325	26.1	73.9
5.00	25.8	16.0	12.6	0.0129	15.0	13.8	0.0215	16.8	83.2
15.00	25.6	10.0	6.5	0.0130	9.0	14.8	0.0129	8.7	91.3
30.00	25.6	8.0	4.5	0.0130	7.0	15.1	0.0092	6.0	94.0
60.00	25.9	6.0	2.6	0.0129	5.0	15.5	0.0066	3.5	96.5
250.00	25.8	5.0	1.6	0.0129	4.0	15.6	0.0032	2.1	97.9
1440.00	25.5	5.0	1.5	0.0130	4.0	15.6	0.0014	1.9	98.1

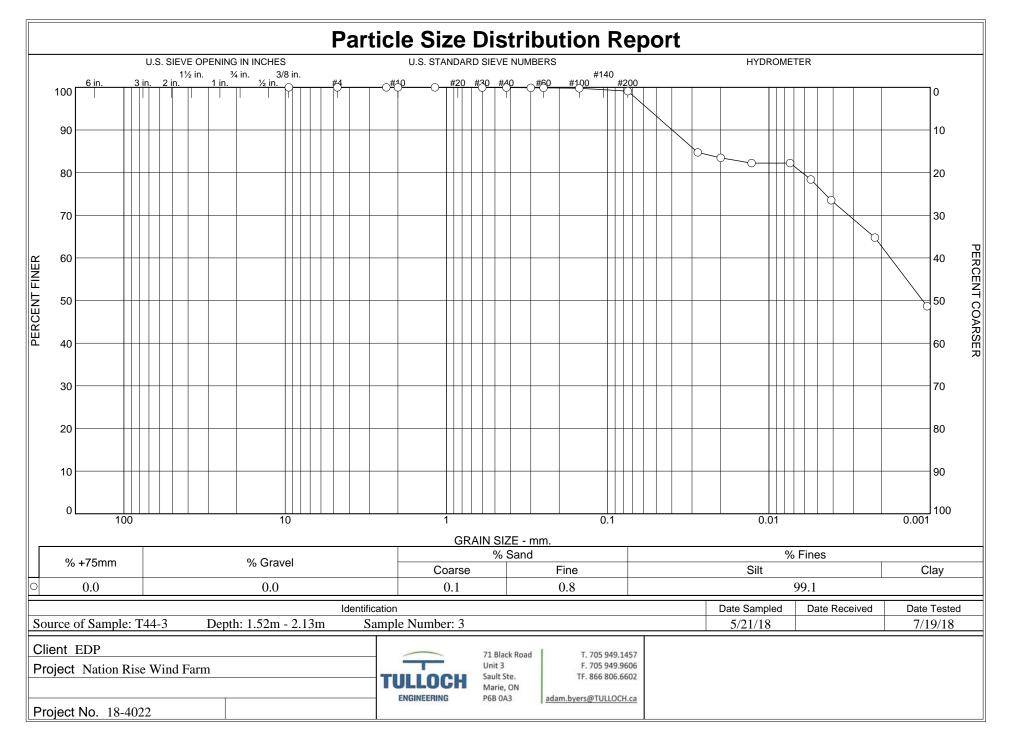
7/20/2018

Oshblas	0		Sand		Fines			
Cobbles	Gravel	Coarse	Fine	Total	Silt	Clay	Total	
0.0	0.0	0.0	6.3	6.3	91.7	2.0	93.7	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0080	0.0140	0.0192	0.0248	0.0353	0.0432	0.0479	0.0530	0.0652	0.0686	0.0722	0.0877

Fineness Modulus	Cu	Cc
0.00	3.79	1.68

Tested By: T.Linley


Checked By: S.Hoffman

lient: EDP	D' 117' '	Г							
•	on Rise Wind 5er: 18-4022	Farm							
ocation: T4									
epth: 1.52m	- 2.13m			Sam	ple Nu	imber: 3			
ate Sample		D	ate Tested: '	7/19/18					
ested by: T	Linley					y: S.Hoffr	nan		
			Sie	ve Test D	ata				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Siev Weig (gram	ht	Percent Finer	Percent Retained		
179.30	0.00	9.5mm	0.00		.00	100.0	0.0		
		#4	0.00		.00	100.0	0.0		
		#8	0.00	0	.00	100.0	0.0		
		#10	0.00	0	.00	100.0	0.0		
		#16	0.00	0	.00	100.0	0.0		
		#30	0.10	0	.00	99.9	0.1		
		#40	0.00	0	.00	99.9	0.1		
		#50	0.10	0	.00	99.9	0.1		
		#60	0.00		.00	99.9	0.1		
		#100	0.20		.00	99.8	0.2		
		#200	1.20	0	.00	99.1	0.9		
			Hydro	meter Tes	t Data				
		ial passing #10)		si Dala				
ercent passi eight of hyd utomatic tem Composite eniscus corr pecific gravit ydrometer ty	ng #10 based rometer samp perature corre- correction (flu ection only = y of solids = 2 pe = 152H	upon complete le =82.2 ection id density and -1.0	sample = 10	0.0 ight) at 20	deg. C				
ercent passii eight of hyd utomatic tem Composite eniscus corr pecific gravit ydrometer ty Hydrometer Elapsed	ng #10 based rometer samp perature corre- correction (flu ection only = y of solids = 2 pe = 152H	upon complete le =82.2 ection id density and -1.0 2.6 th equation: L =	sample = 10	0.0 ight) at 20	deg. C		Diameter (mm.)	Percent Finer	
ercent passin eight of hyd utomatic tem Composite of eniscus corr becific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00	ng #10 based rometer samp operature correction (flu ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 26.5	upon complete le =82.2 ection id density and -1.0 2.6 th equation: L = Actual Reading 72.0	sample = 10 meniscus he = 16.294964 - Corrected Reading 68.8	0.0 ight) at 20 0.164 x R K 0.0128	deg. C m Rm 71.0	= -5 Eff. Depth 4.7	(mm.) 0.0276	Finer 84.7	Retaine 15.3
ercent passin eight of hyd utomatic tem Composite of eniscus corr becific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00	ng #10 based rometer samp perature corre- correction (flu ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 26.5 26.4	upon complete le =82.2 ection id density and -1.0 2.6 th equation: L = Actual Reading 72.0 71.0	sample = 10 meniscus he = 16.294964 - Corrected Reading 68.8 67.8	0.0 ight) at 20 0.164 x R K 0.0128 0.0128	deg. C m 71.0 70.0	= -5 Eff. Depth 4.7 4.8	(mm.) 0.0276 0.0199	Finer 84.7 83.5	Retaine 15.3 16.5
ercent passin eight of hyd utomatic tem Composite of eniscus corr becific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 5.00	ng #10 based rometer samp operature corre- correction (flu ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 26.5 26.4 26.4	upon complete le =82.2 ection id density and -1.0 2.6 th equation: L = Actual Reading 72.0 71.0 70.0	sample = 10 meniscus he = 16.294964 - Corrected Reading 68.8 67.8 66.8	0.0 ight) at 20 0.164 x R K 0.0128 0.0128 0.0128	deg. C m 71.0 70.0 69.0	= -5 Eff. Depth 4.7 4.8 5.0	(mm.) 0.0276 0.0199 0.0128	Finer 84.7 83.5 82.2	Retaine 15.3 16.5 17.8
ercent passi eight of hyd utomatic tem Composite of eniscus corr becific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 5.00 15.00	ng #10 based rometer samp operature corri- correction (fluection only = y of solids = 2 pe = $152H$ effective dept Temp. (deg. C.) 26.5 26.4 26.4 26.4	upon complete le =82.2 ection id density and -1.0 2.6 th equation: L = Actual Reading 72.0 71.0 70.0 70.0 70.0	sample = 10 meniscus he = 16.294964 - Corrected Reading 68.8 67.8 66.8 66.8	0.0 ight) at 20 0.164 x R K 0.0128 0.0128 0.0128 0.0128 0.0128	deg. C m 71.0 70.0 69.0 69.0	= -5 Eff. Depth 4.7 4.8 5.0 5.0	(mm.) 0.0276 0.0199 0.0128 0.0074	Finer 84.7 83.5 82.2 82.2	Retaine 15.3 16.5 17.8 17.8
ercent passin eight of hyd utomatic tem Composite of eniscus corr becific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 5.00 15.00 30.00	ng #10 based rometer samp perature corri- correction (flu ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 26.5 26.4 26.4 26.4 26.4 26.4	upon complete le = 82.2 ection id density and -1.0 2.6 th equation: L = Actual Reading 72.0 71.0 70.0 70.0 70.0 67.0	sample = 100 meniscus hei = 16.294964 - Corrected Reading 68.8 67.8 66.8 66.8 66.8 66.8 63.7	0.0 ight) at 20 0.164 x R K 0.0128 0.0128 0.0128 0.0128 0.0128 0.0129	deg. C m 71.0 70.0 69.0 69.0 66.0	Eff. Depth 4.7 4.8 5.0 5.0 5.5	(mm.) 0.0276 0.0199 0.0128 0.0074 0.0055	Finer 84.7 83.5 82.2 82.2 78.4	Retaine 15.3 16.5 17.8 17.8 21.6
ercent passin eight of hydromatic terr Composite of eniscus corr becific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 5.00 15.00 30.00 60.00	ng #10 based rometer samp operature correction (flu ection only = y of solids = 2 pe = 152H effective dept Temp. (deg. C.) 26.5 26.4 26.4 26.4 26.4 26.1 26.2	upon complete le = 82.2 ection id density and -1.0 2.6 th equation: L = Actual Reading 72.0 71.0 70.0 70.0 67.0 63.0	sample = 100 meniscus hei = 16.294964 - Corrected Reading 68.8 67.8 66.8 66.8 66.8 63.7 59.7	0.0 ight) at 20 0.164 x R 0.0128 0.0128 0.0128 0.0128 0.0129 0.0129	deg. C m 71.0 70.0 69.0 69.0 66.0 62.0	Eff. Depth 4.7 4.8 5.0 5.0 5.5 6.1	(mm.) 0.0276 0.0199 0.0128 0.0074 0.0055 0.0041	Finer 84.7 83.5 82.2 82.2 78.4 73.5	Retaine 15.3 16.5 17.8 17.8 21.6 26.5
ercent passin eight of hyd utomatic tem Composite of eniscus corr becific gravit ydrometer ty Hydrometer Elapsed Time (min.) 1.00 2.00 5.00 15.00 30.00	ng #10 based rometer samp perature corricorrection (flue ection only = y of solids = 2 pe = $152H$ effective dept Temp. (deg. C.) 26.5 26.4 26.4 26.4 26.4 26.4	upon complete le = 82.2 ection id density and -1.0 2.6 th equation: L = Actual Reading 72.0 71.0 70.0 70.0 70.0 67.0	sample = 100 meniscus hei = 16.294964 - Corrected Reading 68.8 67.8 66.8 66.8 66.8 66.8 63.7	0.0 ight) at 20 0.164 x R K 0.0128 0.0128 0.0128 0.0128 0.0128 0.0129	deg. C m 71.0 70.0 69.0 69.0 66.0	Eff. Depth 4.7 4.8 5.0 5.0 5.5 6.1 7.3	(mm.) 0.0276 0.0199 0.0128 0.0074 0.0055	Finer 84.7 83.5 82.2 82.2 78.4	16.5 17.8 17.8 21.6

Cabbles		Sand						Fines			
Cobbles	obbles Gravel		Coarse		Fine Tota			Silt		Clay	
0.0		0.0	0.1		0.8	0.9					99.1
) 10	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	Dg

Fineness Modulus

0.00

Tested By: T.Linley

Checked By: S.Hoffman

7/24/2018

Client: EDP Project: Nation Rise Wind Farm **Project Number:** 18-4022 Location: T58-11 **Depth:** 12.19m - 12.80m **Date Sampled:** 5/22/18

Sample Number: 11 Date Tested: 7/22/18

Tested by: T.Linley

Checked by: S.Hoffman

Sieve Test Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	Percent Retained
624.40	0.00	1.5"	0.00	0.00	100.0	0.0
		25.4mm	141.10	0.00	77.4	22.6
		19mm	25.50	0.00	73.3	26.7
		16mm	25.00	0.00	69.3	30.7
		13.2mm	5.00	0.00	68.5	31.5
		9.5mm	24.60	0.00	64.6	35.4
		#4	38.90	0.00	58.3	41.7
		#8	43.40	0.00	51.4	48.6
78.20	0.00	#16	5.90	0.00	47.5	52.5
		#30	7.10	0.00	42.8	57.2
		#40	2.90	0.00	40.9	59.1
		#50	3.60	0.00	38.6	61.4
		#60	1.90	0.00	37.3	62.7
		#100	5.20	0.00	33.9	66.1
		#200	6.80	0.00	29.4	70.6
			Hydrom	eter Test Da	ita	

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 48.6

Weight of hydrometer sample =78.2

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -5

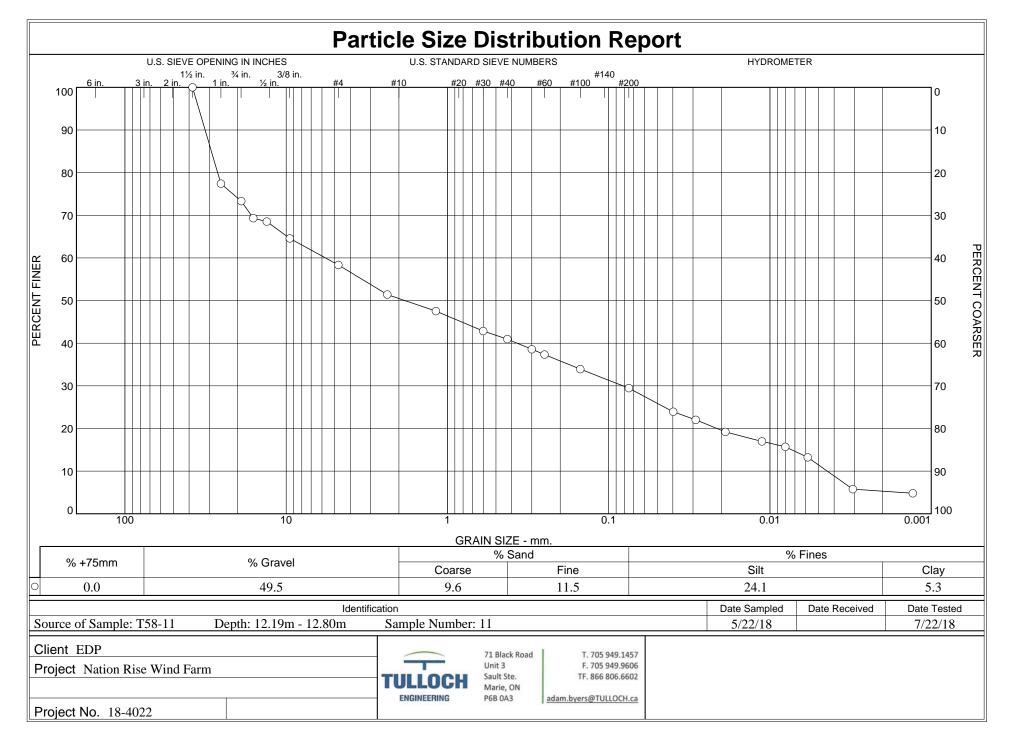
Meniscus correction only = -1.0

Specific gravity of solids = 2.6

Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	26.9	41.0	38.0	0.0128	40.0	9.7	0.0398	23.9	76.1
2.00	26.9	38.0	35.0	0.0128	37.0	10.2	0.0289	22.0	78.0
5.00	26.9	33.5	30.5	0.0128	32.5	11.0	0.0189	19.2	80.8
15.00	26.8	30.0	27.0	0.0128	29.0	11.5	0.0112	17.0	83.0
30.00	26.8	28.0	25.0	0.0128	27.0	11.9	0.0080	15.7	84.3
60.00	26.9	24.0	21.0	0.0128	23.0	12.5	0.0058	13.2	86.8
250.00	27.2	12.0	9.2	0.0127	11.0	14.5	0.0031	5.8	94.2
1440.00	26.0	11.0	7.6	0.0129	10.0	14.7	0.0013	4.8	95.2


Tulloch Engineering Inc.

Fractional Components

Cobbles	Croval		Sand		Fines			
Copples	Gravel	Coarse	Fine	Total	Silt	Clay	Total	
0.0	49.5	9.6	11.5	21.1	24.1	5.3	29.4	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0015	0.0044	0.0073	0.0213	0.0818	0.3699	1.8397	5.7110	26.6119	29.1097	31.8420	34.8307

Fineness Modulus	(Cc
3.89	1293.38	0.27

Checked By: S.Hoffman

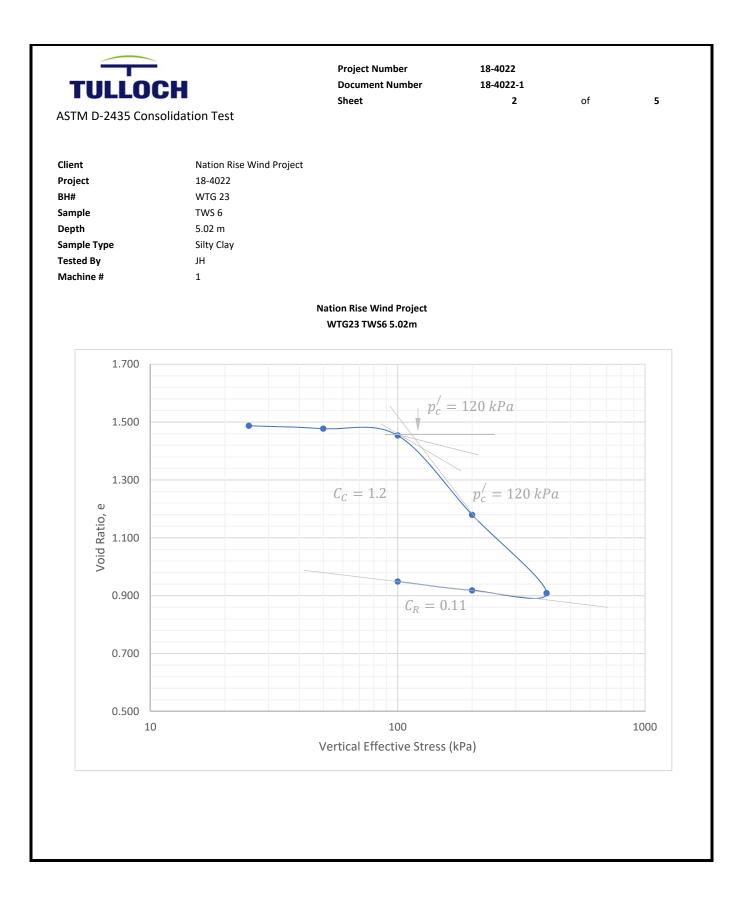
Consolidation Tests

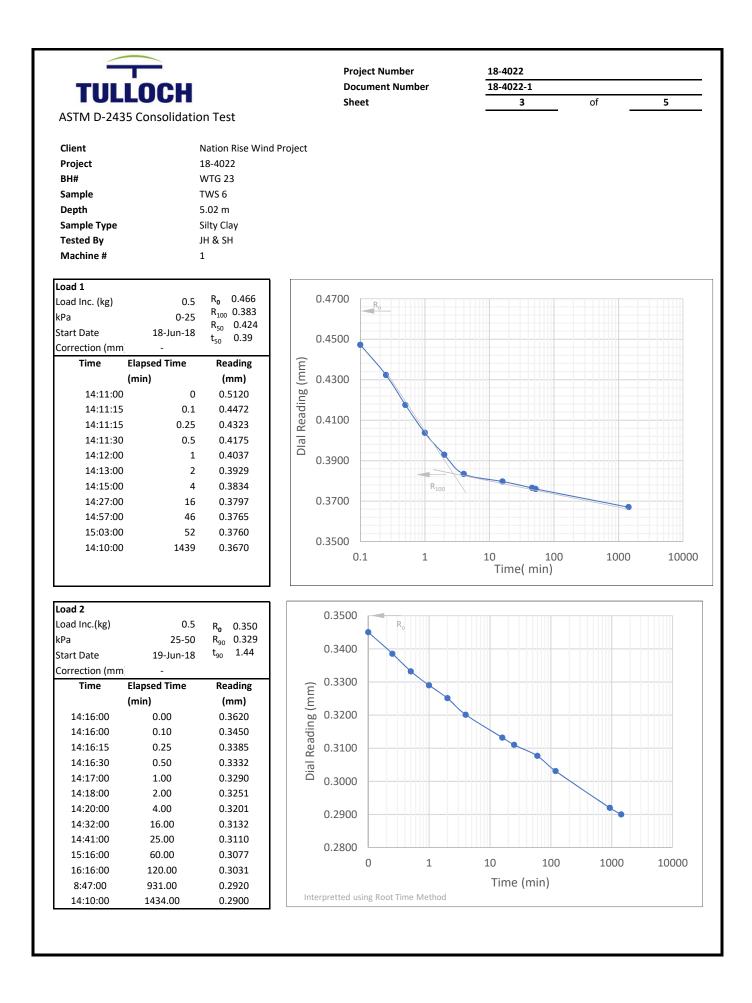
Project Number Document Number Sheet

18-4022		Test No. 1
18-4022-1		
1	of	5

ASTM D-2435 Consolidation Test

Client	Nation Rise Wind Project
Project	18-4022
BH#	WTG 23
Sample	TWS 6
Depth	5.02 m
Sample Type	Silty Clay (CL)
Tested By	J.H.
Machine #	1


	Before Test	After Test
Height (cm)	1.5	1.17
Diameter (cm)	5	5
Area (cm²)	19.63	19.63
Volume (cm ³)	29.45	22.9
Ring + Wet Sample (gm)	102.4	101.8
Ring + Dry Sample (gm)	-	84
Water(gm)	-	17.8
Ring(gm)	50.2	50.2
Wet Sample (gm)	52.2	49.5
Water Content (%)	55.7	35.9
Dry Weight (gm)	-	33.8
Dry Density (gm/cm ³)		1.48
Dry Unit Weight (kN/m ³)		14.5
Specific Gravity	2.7	2.7
Degree of Saturation (%)	100%	100%
Volume of Solids (cm ³)		11.78
Height of Solids (cm)	0.6	0.6
Void Ratio	1.504	0.95


Legend

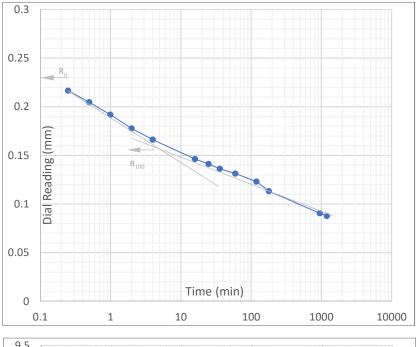
N/A not applicable

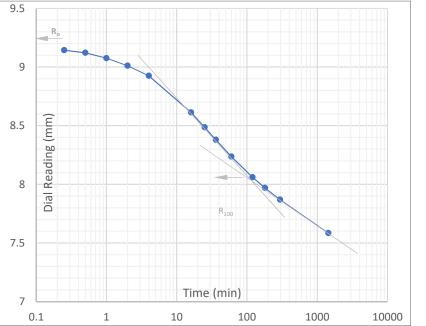
Hanger Load	Pressure	Change in	New Height	Strain	Void Height	Void Ratio	t-50/t-90	Cv
Kg	kPa	mm	mm	%	mm	е	min	m²/y
0.5	25	0.099	14.901	0.66%	89.901	1.487	0.35	16.2
1	50	0.060	14.841	0.40%	89.841	1.477	1.44	17.2
2	100	0.142	14.699	0.96%	89.699	1.454	0.35	15.6
4	200	1.646	13.053	11.20%	88.053	1.179	14	0.4
8	400	1.624	11.429	12.44%	86.429	0.909	3.1	1.1
4	200	-0.0579	11.487	-0.51%	86.487	0.918	-	-
2	100	-0.1831	11.670	-1.59%	86.670	0.949	-	-

Moisture Before Test		
Tin I.D.	01	
Tare (g)	0.4	
Tare + WS (g)	54.9	
Tare + DS (g)	43.5	
% Moist	26.5%	

Project Number
Document Number

Sheet



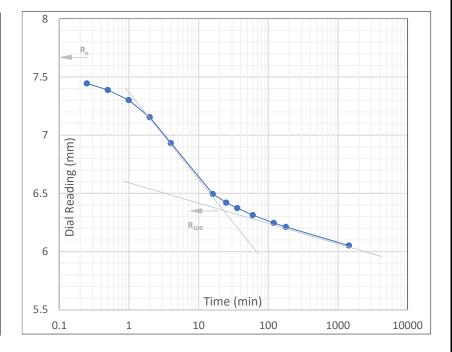

ASTM D-2435 Consolidation Test

Client	Nation Rise Wind Project
Project	18-4022
BH#	WTG 23
Sample	TWS 6
Depth	5.02 m
Sample Type	Silty Clay
Tested By	JH
Machine #	1

1		
Load 3		
Load Inc.lbs	1	R ₀ 0.23
kPa	50-100	R_{100} 0.158
Start Date	20-Jun-18	R ₅₀ 0.194
Correction (mm	-	t ₅₀ 0.35
Time	Elapsed Time	Reading
	(min)	(mm)
14:28:00	0	0.2919
14:28:15	0.25	0.2165
14:28:30	0.5	0.2047
14:29:00	1	0.1918
14:30:00	2	0.1776
14:32:00	4	0.1661
14:44:00	16	0.1462
14:53:00	25	0.1412
15:04:00	36	0.1362
15:28:00	60	0.1312
16:28:00	120	0.1231
17:28:00	180	0.1131
+1d, 6:56:00	956	0.0904
12:28:00	1202	0.0876

Load 4		D 0.22
Load Inc.lbs	2	R ₀ 9.23 R ₁₀₀ 8.05
kPa	100-200	R ₁₀₀ 8.05 R ₅₀ 8.64
Start Date	21-Jun-18	t ₅₀ 14
Correction (mm	-	
Time	Elapsed Time	Reading
	(min)	(mm)
12:30:00	0	9.2358
12:30:15	0.25	9.1429
12:30:30	0.5	9.120
12:31:00	1	9.0743
12:32:00	2	9.010
12:34:00	4	8.9243
12:46:00	16	8.612
12:55:00	25	8.485
13:06:00	36	8.378
13:30:00	60	8.236
14:30:00	120	8.0598
15:30:00	180	7.9693
17:25:00	295	7.8693
1d + 12:30:00	1440	7.5843

Project Number Document Number


Sheet

ASTM D-2435 Consolidation Test

Client	Nation Rise Wind Project
Project	18-4022
BH#	WTG 23
Sample	TWS 6
Depth	5.02 m
Sample Type	Silty Clay
Tested By	JH & SH
Machine #	1

Load 5		
Load Inc.(kg)	4	R ₀ 7.675
kPa	200-400	R ₁₀₀ 6.36 R ₅₀ 7.018
Start Date	22-Jun-18	R ₅₀ 7.018 t ₅₀ 3.1
Correction (mm)	-	C ₅₀ 0.1
Time	Elapsed Time	Reading
	(min)	(mm)
13:00:00	0	7.5837
13:00:15	0.25	7.4441
13:00:30	0.5	7.3882
13:01:00	1	7.3018
13:02:00	2	7.1542
13:04:00	4	6.9314
13:16:00	16	6.4945
13:25:00	25	6.4199
13:36:00	36	6.374
14:00:00	60	6.3128
15:00:00	120	6.2456
16:00:00	180	6.2117
1d + 13:00:00	1440	6.0511

Load 6		
Load Inc. (kg)	4	
kPa	400-200	
Start Date	23-Jun-18	
Correction (mn	n)	
Time	Elapsed Time	Reading
	(min)	(mm)
14:28:00	ე 0	6.0511
14:28:00 13:00:00		6.0511 6.109

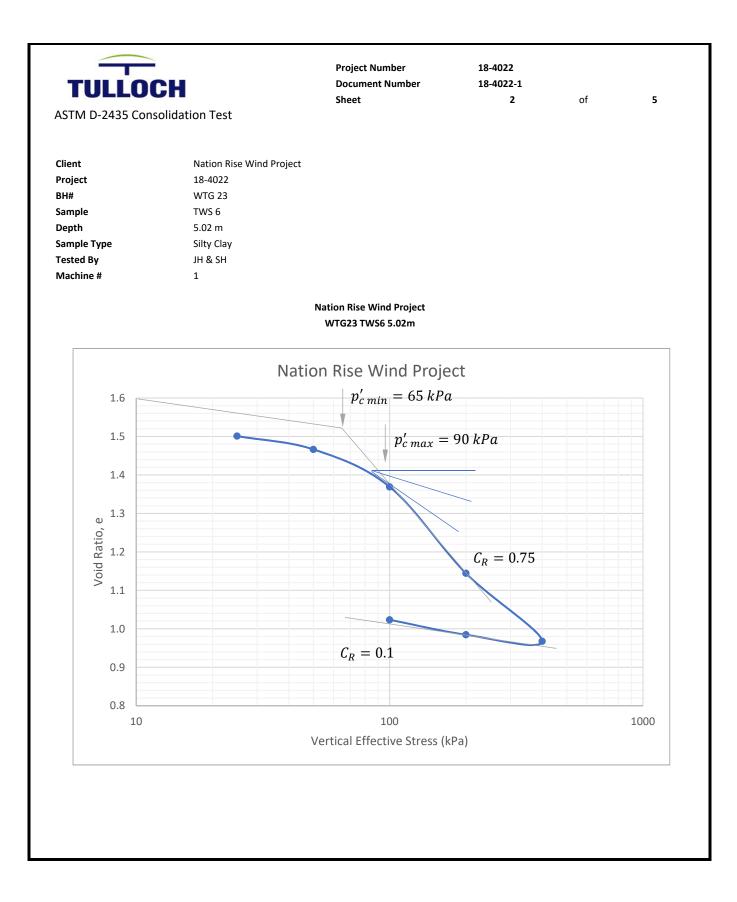
Load 7		
Load Inc. (kg)	4	
kPa 💦	200-100	
Start Date	24-Jun-18	
Correction (mm	-	
Time	Elapsed Time	Reading
Time	Elapsed Time (min)	Reading (mm)
Time 13:10:00	(min)	U U
	(min) 0	(mm)

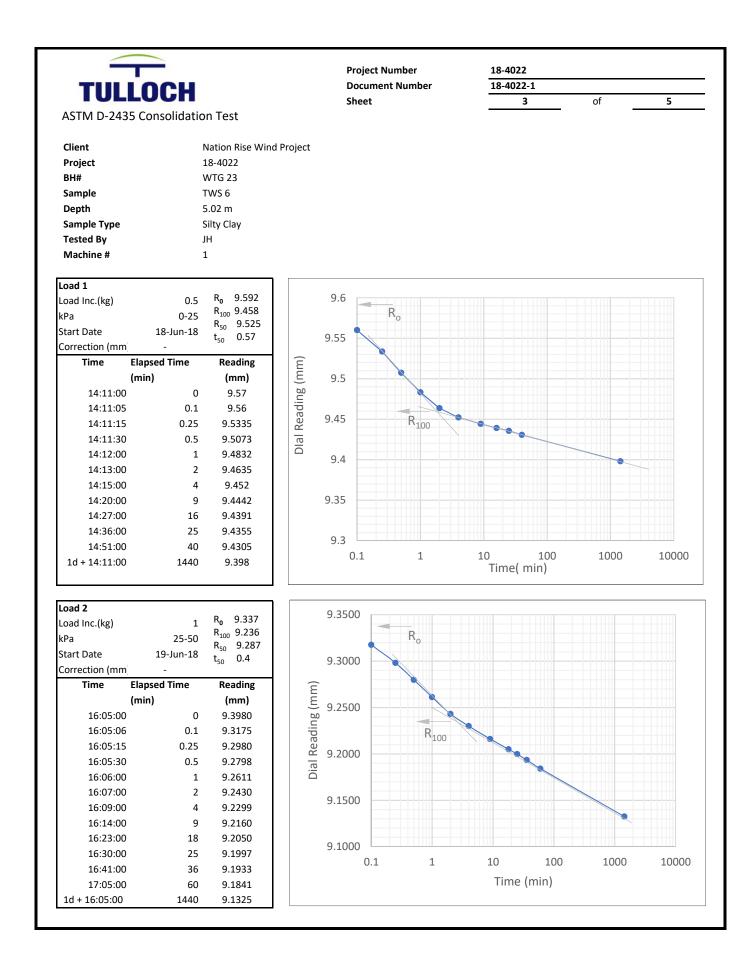
Project Number Document Number Sheet

18-4022		Test No. 2
18-4022-2		
1	of	5

Moisture Before Test		
Tin I.D.	2	
Tare (g)	0.4	
Tare + WS (g)	30.2	
Tare + DS (g)	19.4	
% Moist	56.8%	

ASTM D-2435 Consolidation Test

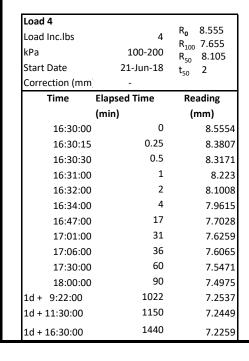

Client	Nation Rise Wind Project
Project	18-4022
BH#	T21
Sample	TWS 5
Depth	3.35m
Sample Type	Silty Clay (CL)
Tested By	J.H.
Machine #	1

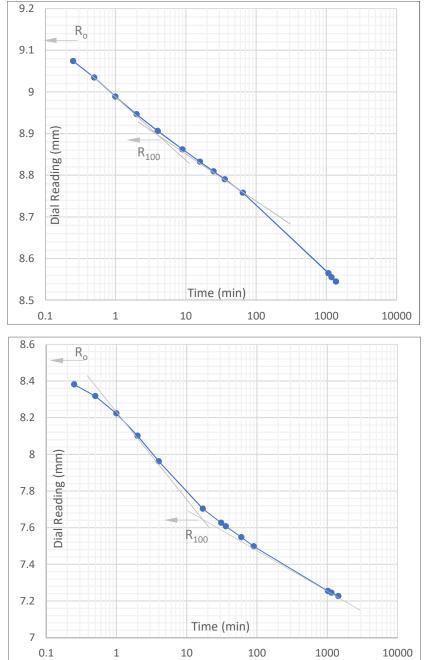

	Before Test	After Test
Height (cm)	1.5	
Diameter (cm)	5	
Area (cm²)	19.63	
Volume (cm ³)	29.45	
Ring + Wet Sample (gm)	107	
Ring + Dry Sample (gm)		
Water(gm)	20.57	
Ring(gm)	50.2	
Wet Sample (gm)	56.8	
Water Content (%)	56.8	
Dry Weight (gm)	36.23	
Dry Density (gm/cm ³)	1.23	
Dry Unit Weight (kN/m³)	12.06	
Specific Gravity	2.7	
Degree of Saturation (%)	100%	
Volume of Solids (cm ³)		
Height of Solids (cm)	5.92	
Void Ratio	1.534	
Legend		

Legend

N/A not applicable

Hanger Load	Pressure	Change in	New Height	Strain	Void Height	Void Ratio	t-50	Cv
Kg	kPa	mm	mm	%	mm	е	min	m²/y
0.5	25	0.194	14.806	1.29%	8.886	1.501	0.57	9.7
1	50	0.205	14.795	1.37%	8.681	1.466	0.4	13.8
2	100	0.576	14.424	3.84%	8.1048	1.369	0.85	6.2
4	200	1.330	13.670	8.87%	6.7748	1.144	2	2.6
8	400	1.046	13.954	6.97%	5.7288	0.968	1.8	2.6
4	200	-0.1	15.1	-0.67%	5.8288	0.985	-	-
2	100	-0.23	15.23	-1.53%	6.0588	1.023	-	-





Client	Nation Rise Wind Project
Project	18-4022
BH#	WTG 23
Sample	TWS 6
Depth	5.02 m
Sample Type	Silty Clay
Tested By	JH & SH
Machine #	1

Load 3		
Load Inc. (kg)	2	R _o 9.121
kPa	50-100	R ₁₀₀ 8.892
Start Date	20-Jun-18	R ₅₀ 0.194
Correction (mm)	-	t ₅₀ 0.85
Time	Elapsed Time	Reading
	(min)	(mm)
17:10:00	0	9.2166
17:10:15	0.25	9.0738
17:10:30	0.5	9.0343
17:11:00	1	8.9888
17:12:00	2	8.9466
17:14:00	4	8.9061
17:19:00	9	8.8618
17:26:00	16	8.8323
17:35:00	25	8.8092
17:46:00	36	8.7901
18:15:00	65	8.7581
1d + 11:06:00 A	1076	8.5648
1d + 13:00:00	1190	8.5554
1d + 16:10:00	1380	8.5448

Project Number Document Number

Sheet

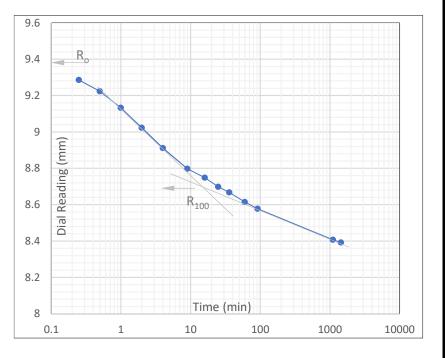
18-4022 18-4022-1

4 of

5


Machine #

Client	Nation Rise Wind Project
Project	18-4022
BH#	WTG 23
Sample	TWS 6
Depth	5.02 m
Sample Type	Silty Clay
Tested By	JH & SH


1

Project Number Document Number

Sheet

Load 5 R₀ 9.438 8 Load Inc. (kg) R_{100} 8.68 kPa 200-400 R₅₀ 9.059 Start Date 22-Jun-18 t₅₀ 1.2 Correction (mm -Time Elapsed Time Reading (min) (mm) 0 16:40:00 16:40:15 0.25 9.2854 0.5 16:40:30 9.2231 16:41:00 1 9.1328 16:42:00 2 9.0224 4 8.9107 16:44:00 9 16:49:00 8.7975 16 16:56:00 8.7483 25 17:05:00 8.6976 17:16:00 36 8.667 60 8.6143 17:40:00 18:12:00 92 8.5774 1d + 11:10:00 1110 8.407 1d + 16:40:00 1440 8.3919

Load 6		
Load Inc. (kg)	4	
kPa	400-200	
Start Date	22-Jun-18	
Correction (mr	n)	
Time	Elapsed Time	Reading
	(min)	(mm)
14:28:0	0 0	6.0511
13:00:0	0	6.109

Load 7		
Load Inc. (kg)	2	
kPa	200-100	
Start Date	23-Jun-18	
Correction (mm	(-	
Time	Elapsed Time	Reading
	(min)	(mm)
13:10:00		(mm) 6.109
13:10:00 13:10:00	0	

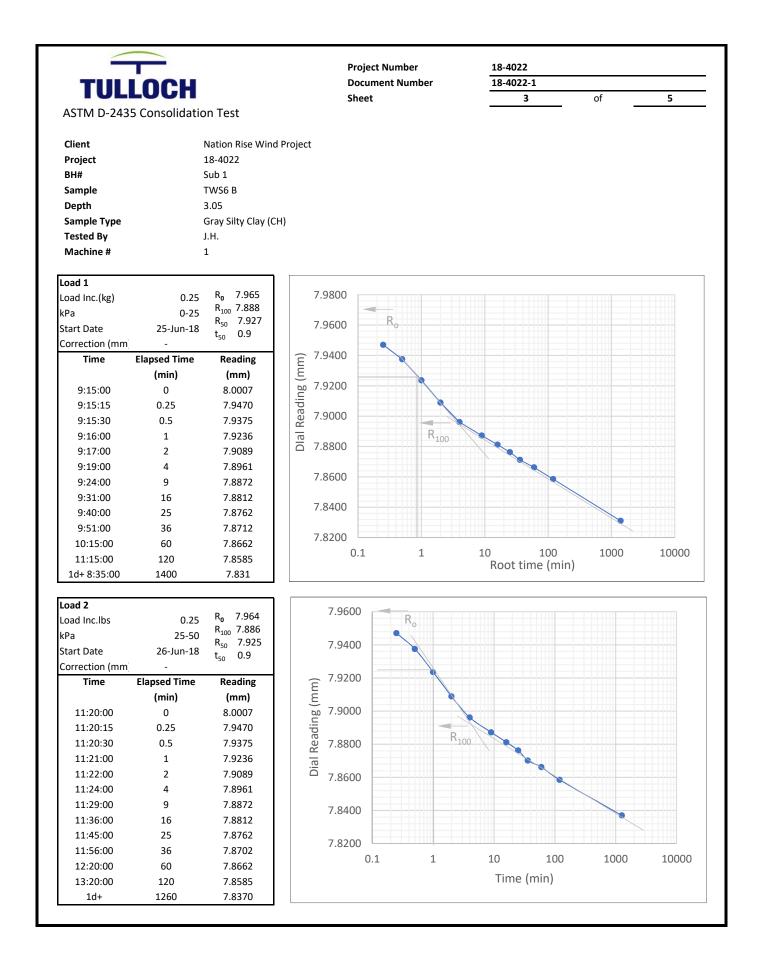
Project Number Document Number Sheet

18-4022		Test No. 3
18-4022-2		
1	of	5

Moisture Before Test		
Tin I.D.	3	
Tare (g)	0.4	
Tare + WS (g)	28.6	
Tare + DS (g)	19.9	
% Moist	44.6%	

ASTM D-2435 Consolidation Test

Client	Nation Rise Wind Project
Project	18-4022
BH#	Sub 1
Sample	TWS6 B
Depth	3.05
Sample Type	Gray Silty Clay (CH)
Tested By	J.H.
Machine #	1


	Before Test	After Test
Height (cm)	1.5	
Diameter (cm)	5	
Area (cm²)	19.63	
Volume (cm ³)	29.45	
Ring + Wet Sample (gm)		
Ring + Dry Sample (gm)		
Water(gm)		
Ring(gm)	50.2	
Wet Sample (gm)		
Water Content (%)	44.6	
Dry Weight (gm)		
Dry Density (gm/cm ³)		
Dry Unit Weight (kN/m³)		
Specific Gravity	2.7	
Degree of Saturation (%)	100%	
Volume of Solids (cm ³)	13.358	
Height of Solids (cm)	0.6805	
Void Ratio	1.2042	
Legend		

Legend

N/A not applicable

Hanger Load	Pressure	Change in	New Height	Strain	Void Height	Void Ratio	t-50	Cv
Kg	kPa	mm	mm	%	mm	е	min	m²/y
0.5	25	0.134	14.866	0.89%	7.876	1.157	0.9	6.3
1	50	0.127	14.873	0.85%	7.749	1.139	0.9	6.3
2	100	0.368	14.632	2.45%	7.381	1.085	0.82	6.8
4	200	0.811	14.189	5.41%	6.57	0.965	2.95	1.8
8	400	1.202	13.798	8.01%	5.368	0.789	2.8	1.8
4	200	-0.1	15.1	-0.67%	5.468	0.804	-	-
1	50	-0.35	15.35	-2.33%	5.818	0.855	-	-

TULLOC	H	Project Number Document Number Sheet	18-4022 18-4022-1 2	of 5
STM D-2435 Conso	lidation Test			
lient	Nation Rise Wind Project			
roject	18-4022			
H#	Sub 1			
ample	TWS6 B			
epth	3.05			
ample Type	Gray Silty Clay (CH)			
ested By Nachine #	J.H. 1			
	-			
		Nation Rise Wind Project		
		Suib 1 TWS6 B 3.05m		
	Nati	on Rise Wind Proje	ct	
1.200		$p'_{c(min)} = 7$	'5 kPa	
1.150		$p'_{c(max)}$	$k_{c} = 120 kPa$	
1.100				
1.050				
• 1.000 • 0.950 • 0.900			$C_{C} = 0.55$	
tio				
۳ <u>8</u> 0.950				
oid				
> 0.900				
0.850				
0.800		$C_{R} = 0.085$		
0.750				
0.750				
0.700				
10		100		1000
		Vertical Effective Stress (I	kPa)	

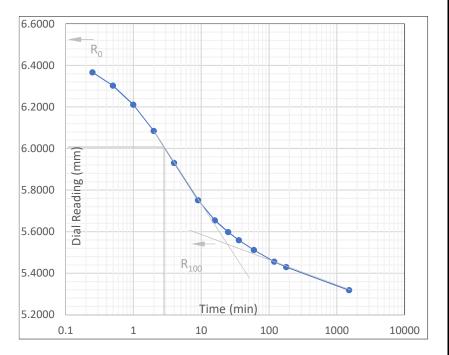
Load Inc.(kg) 0.25 R ₀ 7.808 kPa 50-100 R ₁₀₀ 7.582 Start Date 27-Jun-18 t _{ro} .35 7.7500	5
ASTM D-2435 Consolidation Test Client Nation Rise Wind Project Project 18-4022 BH# Sub 1 Sample TWS6 B Depth 3.05 Sample Type Gray Silty Clay (CH) Tested By J.H. Machine # 1 Load 3 Load Inc.(kg) 0.25 R ₀ 7.808 kPa 50-100 R ₁₀₀ 7.582 KPa 50-100 R ₁₀₀ 7.582 Ksor 7.695 Start Date 27-Jun-18 K ₅₀ 7.695 Correction (mm - Time Elapsed Time Reading (min) (mm)	5
Client Nation Rise Wind Project Project 18-4022 BH# Sub 1 Sample TWS6 B Depth 3.05 Sample Type Gray Silty Clay (CH) Tested By J.H. Machine # 1 Itemation Ration 7.582 Rso 7.695 Start Date Rot 7.7500 Rso 7.6	
Project 18-4022 BH# Sub 1 Sample TWS6 B Depth 3.05 Sample Type Gray Silty Clay (CH) Tested By J.H. Machine # 1	
BH# Sub 1 Sample TWS6 B Depth 3.05 Sample Type Gray Silty Clay (CH) Tested By J.H. Machine # 1 Load Inc.(kg) 0.25 Ro 7.808 KPa 50-100 Roo 7.582 Start Date 27-Jun-18 Reading (mm) 7.000	
Sample TWS6 B Depth 3.05 Sample Type Gray Silty Clay (CH) Tested By J.H. Machine # 1 Load Inc.(kg) 0.25 Ro 7.808 KPa 50-100 Roo 7.582 Start Date 27-Jun-18 Reading (mm) 7.7500 Time Elapsed Time (mm) Reading (mm)	
Depth 3.05 Sample Type Gray Silty Clay (CH) Tested By J.H. Machine # 1 Ioad 3 Load Inc.(kg) 0.25 Rº 7.808 kPa 50-100 Rino 7.582 Start Date 27-Jun-18 r.695 Correction (mm) - Time Elapsed Time Reading (min) (mm) 7.7000	
Sample Type Gray Silty Clay (CH) Tested By J.H. Machine # 1 Load 3 Load Inc.(kg) 0.25 Ro 7.800 KPa 50-100 Rino 7.582 Start Date 27-Jun-18 r_50 35 Correction (mm) - 7.7500 Time Elapsed Time Reading (mm) 7.7000	
Tested By J.H. Machine # 1 Load 3 Load Inc.(kg) 0.25 Ro 7.8000 KPa 50-100 Rso 7.582 Start Date 27-Jun-18 tso 3.5 Correction (mm) - 7.7500 Time Elapsed Time (min) Reading (mm)	
Machine # 1 Load 3 Load Inc.(kg) 0.25 Ro 7.800 kPa 50-100 Rino 7.582 Start Date 27-Jun-18 7.695 Correction (mm) - 7.7500 Time Elapsed Time Reading (min) (mm)	
Load 3 Load Inc.(kg) 0.25 R ₀ 7.808 kPa 50-100 R ₁₀₀ 7.582 Ksart Date 27-Jun-18 K ₅₀ 7.695 t ₅₀ .35 Correction (mm) - Time Elapsed Time Reading (min) (mm)	
Load Inc.(kg) 0.25 R ₀ 7.808 kPa 50-100 R ₁₀₀ 7.582 R ₅₀ 7.695 t ₅₀ .35 Correction (mm - Time Elapsed Time Reading (min) (mm) Reading	
kPa 50-100 R ₁₀₀ 7.582 Rso 7.695 Start Date 27-Jun-18 tso 27-rection (mm) - Time Elapsed Time Reading (min) (mm)	
N a 30-100 R ₅₀ 7.695 Start Date 27-Jun-18 t ₅₀ .35 Correction (mm) - 7.7500 Time Elapsed Time Reading (min) 7.7000	
Start Date 27-Jun-18 t ₅₀ .35 Correction (mm) - 7.7000 Time Elapsed Time Reading (min) 7.7000	
Correction (mm) - Time Elapsed Time Reading (mm) 7.7000	
(min) (mm)	
13:30:00 0 7.8585 7.6500	
13:30:15 0.25 7.7426	
13:30:30 0.5 7.7161 13:31:00 1 7.6840 13:32:00 2 7.6452 13:34:00 4 7.6131 13:39:00 9 7.5500 13:46:00 16 7.5612 7.5000 7.5000	
13:31:00 1 7.6840	
13:32:00 2 7.6452	
13:34:00 4 7.6131 7.5500	
13:39:00 9 7.5810 0 R ₁₀₀	
13:46:00 16 7.5612 7.5000	
13:55:00 25 7.5484	
14:06:00 36 7.5372 7.4500	
14:30:00 60 7.5224 7.4500	
15:30:00 120 7.5024	
16:30:00 180 7.4903 7.4000 Time (min)	
1d+ 8:56:00 1196 7.4401 0.1 1 10 100 1000	10000
Load 4 7.5000	
Load Inc.lbs 0.25 R ₀ 7.340 R ₁₀₀ 6.760	
$kPa 100-200 R_{50} 7.050 R_{0} $	
Start Date 28-Jun-18 t ₅₀ 2.95 7.3000	
Correction (mm -	
Time Elapsed Time Reading	
(min) (mm) 7.1000	
9:00:00 0 7.4397 9:00:15 0.25 7.2901 9:00:30 0.5 7.2447 9:01:00 1 7.1781 9:02:00 2 7.0954 9:04:00 4 6.9995 9:09:00 9 6.8937 6.7000 6.7000	
9:00:15 0.25 7.2901 E	
9:00:30 0.5 7.2447 6.9000	
9:01:00 1 7.1781 9:02:00 2 7.0954	
9:02:00 2 7.0954	
9:04:00 4 6.9995 9:09:00 9 6.8937 6.7000 C	
5.05.00	
9:16:00 16 6.8332	
9:25:00 25 6.7917 9:36:00 36 6.7616 6.5000	
5.50.00 50 0.7010	
10:00:00 60 6.7225 11:00:00 120 6.6728	
11:00:00 120 6.6728 12:00:00 180 6.646 6.3000	
12:00:00 180 6.646 6.3000 Hite (Hitty)	

0.1

1d+ 9:02:00

6.5287

TULLOCH
ASTM D-2435 Consolidation Test


Project Number Document Number

Sheet

18-4022 18-4022-1 5 of 5

Client	Nation Rise Wind Project
Project	18-4022
BH#	Sub 1
Sample	TWS6 B
Depth	3.05
Sample Type	Gray Silty Clay (CH)
Tested By	J.H.
Machine #	1

Load 5		
Load Inc.lbs	0.25	R ₀ 6.52
kPa	200-400	R ₁₀₀ 5.54
Start Date	29-Jun	R ₅₀ 6.03 t ₅₀ 2.80
Correction (mm)	150 2.00
Time	Elapsed Time	Reading
	(min)	(mm)
10:00:00	0	6.5287
10:00:15	0.25	6.3661
10:00:30	0.5	6.3021
10:01:00	1	6.2105
10:02:00	2	6.0842
10:04:00	4	5.9297
10:09:00	9	5.7510
10:16:00	16	5.6534
10:25:00	25	5.5972
10:36:00	36	5.558
11:00:00	60	5.511
12:00:00	120	5.4547
13:00:00	180	5.4291
1d + 11:24:00 A	1524	5.3179

Load 6				
Load Inc. (kg)	4			
kPa	400-200			
Start Date	23-Jun-18			
Correction (mm)				
Times	Flamaad Timaa	Deedline		
Time	Elapsed Time	Reading		
Time	(min)	(mm)		
14:28:00	(min)	0		
	(min)	(mm)		

Load 7		
Load Inc. (kg)	2	
kPa	200-100	
Start Date	24-Jun-18	
Correction (mm	-	
Time	Elapsed Time	Reading
Time	Elapsed Time (min)	Reading (mm)
Time 13:10:00	•	0
	(min)	(mm)

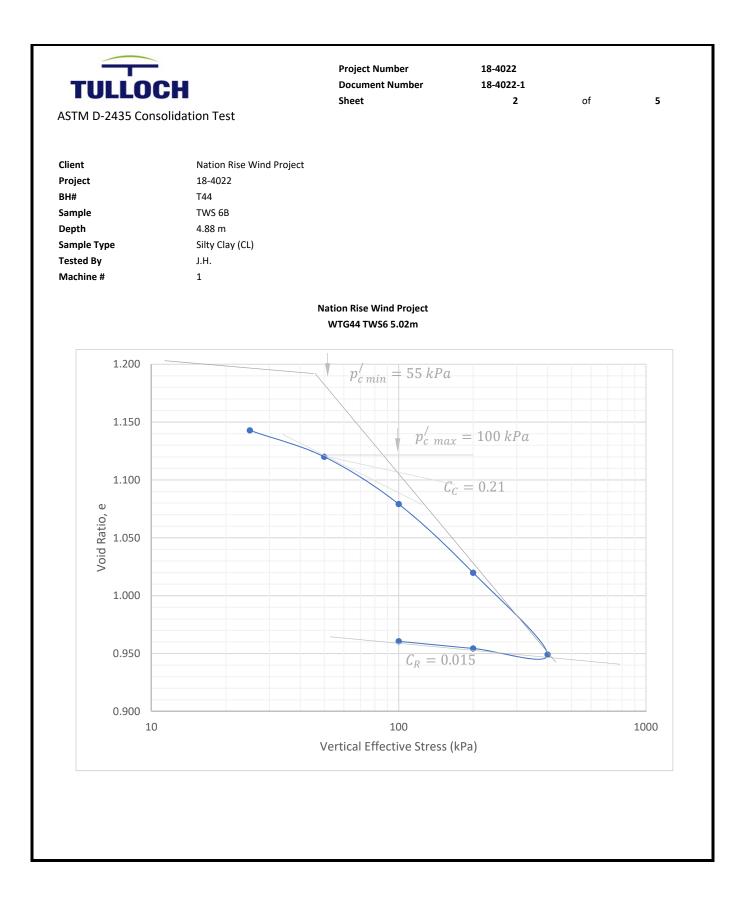
Project Number Document Number Sheet

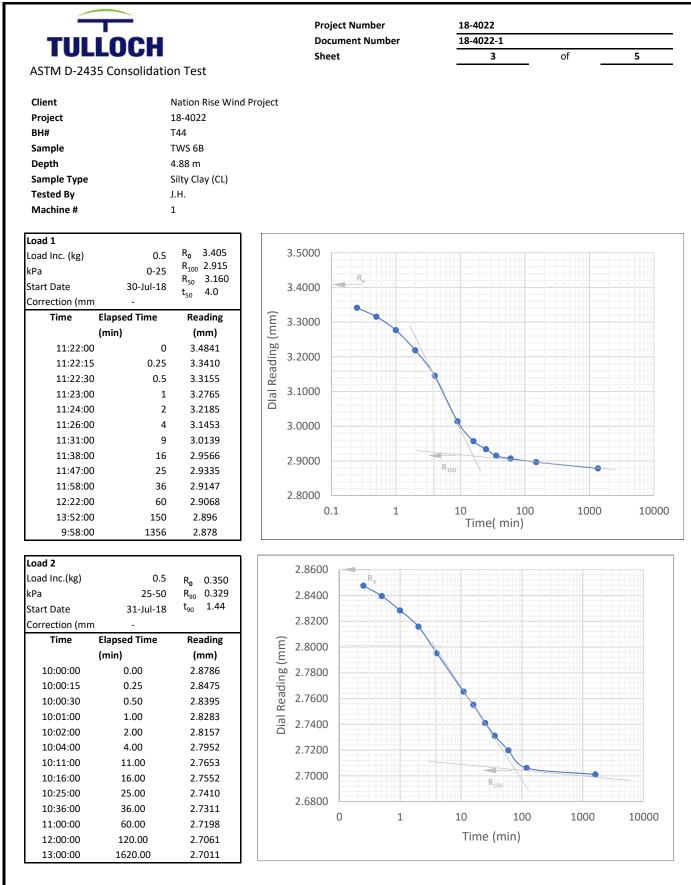
57.2

18-4022		Test No. 4
18-4022-1		
1	of	5

ASTM D-2435 Consolidation Test

Client	Nation Rise Wind Project
Project	18-4022
BH#	T44
Sample	TWS 6B
Depth	4.88 m
Sample Type	Silty Clay (CL)
Tested By	J.H.
Machine #	1


1			
Moisture Before	Moisture Before Test		
Tin I.D.			
Tare (g)			
Tare + WS (g)			
Tare + DS (g)			
% Moist			

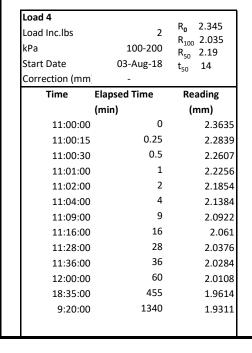

	Before Test	After Test
Height (cm)	1.5	
Diameter (cm)	5	5
Area (cm²)	19.63	19.63
Volume (cm ³)	29.45	29.45
Ring + Wet Sample (gm)	107	106.6
Ring + Dry Sample (gm)	-	91.8
Water(gm)	-	14.8
Ring(gm)	50.2	50.2
Wet Sample (gm)	56.8	56.4
Water Content (%)	45.1%	35.6%
Dry Weight (gm)	43.4	41.6
Dry Density (gm/cm ³)		1.41
Dry Unit Weight (kN/m³)		14.32
Specific Gravity	2.7	2.7
Degree of Saturation (%)		100%
Volume of Solids (cm ³)		13.69
Height of Solids (cm)		0.6975
Void Ratio	1.218	0.961

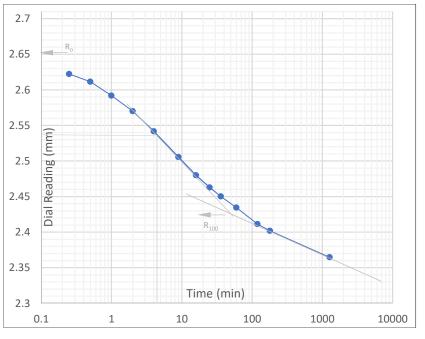
Legend

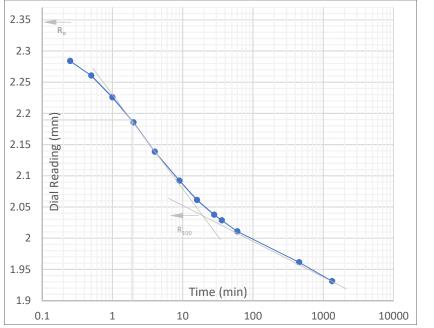
N/A not applicable

Hanger Load	Pressure	Change in	New Height	Strain	Void Height	Void Ratio	t-50	Cv
Kg	kPa	mm	mm	%	mm	е	min	m²/y
0.5	25	0.527	14.901	3.51%	89.473	1.143	4	1.92
1	50	0.159	14.742	1.07%	89.314	1.120	3.80	1.9
2	100	0.285	14.457	1.93%	89.029	1.079	4.6	1.86
4	200	0.414	14.043	2.86%	88.615	1.020	2	1.79
8	400	0.493	13.550	3.51%	88.122	0.949	1.4	1.69
4	200	-0.037	13.587	-0.27%	88.159	0.954	-	-
2	100	-0.043	13.630	-0.32%	88.202	0.961	-	-

Project Number
Document Number


Sheet

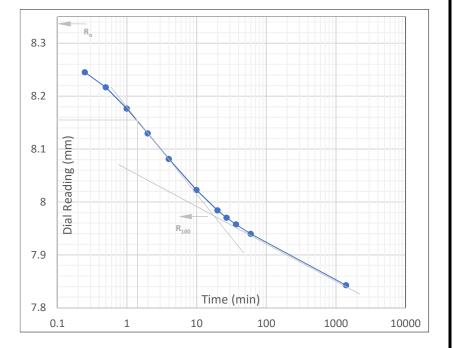



ASTM D-2435 Consolidation Test

Client	Nation Rise Wind Project
Project	18-4022
BH#	T44
Sample	TWS 6B
Depth	4.88 m
Sample Type	Silty Clay (CL)
Tested By	J.H.
Machine #	1

1 50-100	R ₀ 、 2.650 R ₁₀₀ 2.425
	R ₁₀₀ 2.425
02 4 40	
02-Aug-18	R ₅₀ 2.538
-	t ₅₀ 0.35
osed Time	Reading
n)	(mm)
0	2.7011
0.25	2.6222
0.5	2.6113
1	2.5919
2	2.57
4	2.5416
9	2.5056
16	2.4798
25	2.4628
36	2.4501
60	2.4344
120	2.4112
180	2.4019
1272	2.3647
	n) 0 0.25 0.5 1 2 4 9 16 25 36 60 120 180

Project Nun	nber
Document N	Numbei


Sheet

ASTM D-2435 Consolidation Test

Client	Nation Rise Wind Project
Project	18-4022
BH#	T44
Sample	TWS 6B
Depth	4.88 m
Sample Type	Silty Clay (CL)
Tested By	J.H.
Machine #	1

Load 5		
Load Inc.(kg)	4	R ₀ 8.335
kPa	200-400	R ₁₀₀ 7.972
Start Date	05-Aug-18	R ₅₀ 8.154 t ₅₀ 3.1
Correction (mm	-	t ₅₀ 5.1
Time	Elapsed Time	Reading
	(min)	(mm)
9:25:00	0	8.3422
9:25:15	0.25	8.245
9:25:30	0.5	8.2166
9:26:00	1	8.1762
9:27:00	2	8.1296
9:29:00	4	8.0812
9:35:00	10	8.0224
9:45:00	20	7.984
9:52:00	27	7.97
10:02:00	37	7.9575
10:25:00	60	7.9394
10:00:00	1405	7.8424

Load 6			
Load Inc. (kg)	4		
kPa	kPa 400-200		
Start Date	07-Aug-18		
Correction (mm)		
Time	Elapsed Time	Reading	
Time	Elapsed Time (min)	Reading (mm)	
Time 10:00:00	•	0	
	(min) 0	(mm)	

Load 7		
Load Inc. (kg)	4	
kPa	200-100	
Start Date	07-Aug-18	
Correction (mm	-	
Time	Elapsed Time	Reading
Time	Elapsed Time (min)	Reading (mm)
Time 16:51:00	•	0
	(min)	(mm)

Project Number Document Number Sheet

18-4022		Test No. 1	
18-4022-1			
1	of	5	

ASTM D-2435 Consolidation Test

Client	Nation Rise Wind Project
Project	18-4022
BH#	WTG 23
Sample	TWS 6
Depth	5.02 m
Sample Type	Silty Clay (CL)
Tested By	J.H.
Machine #	1

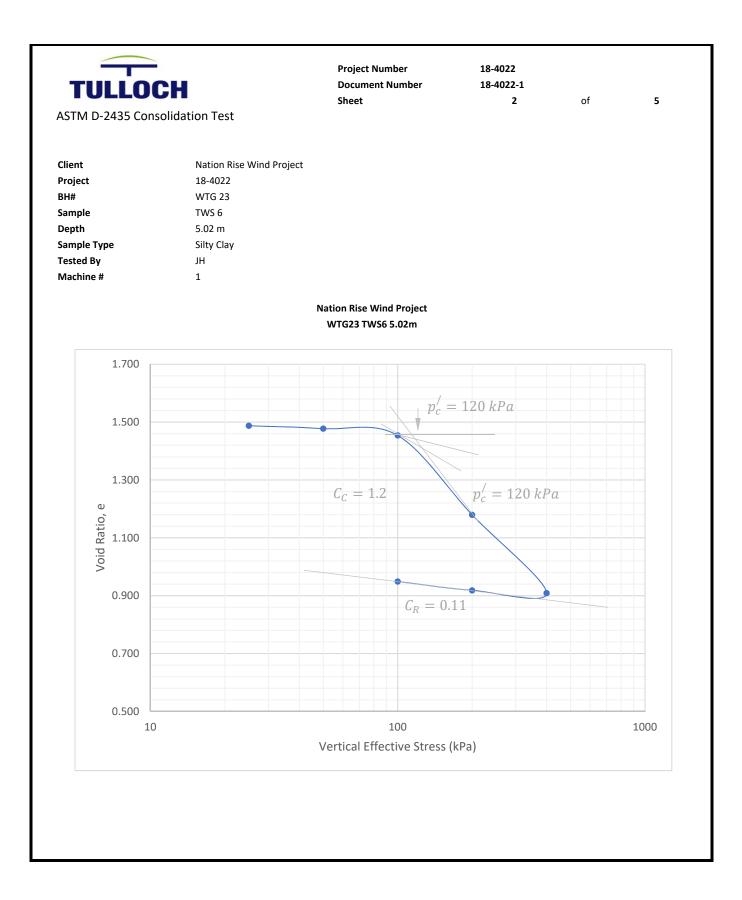
	Before Test	After Test
Height (cm)	1.5	1.17
Diameter (cm)	5	5
Area (cm²)	19.63	19.63
Volume (cm ³)	29.45	22.9
Ring + Wet Sample (gm)	102.4	101.8
Ring + Dry Sample (gm)	-	84
Water(gm)	-	17.8
Ring(gm)	50.2	50.2
Wet Sample (gm)	52.2	49.5
Water Content (%)	55.7	35.9
Dry Weight (gm)	-	33.8
Dry Density (gm/cm ³)		1.48
Dry Unit Weight (kN/m³)		14.5
Specific Gravity	2.7	2.7
Degree of Saturation (%)	100%	100%
Volume of Solids (cm ³)		11.78
Height of Solids (cm)	0.6	0.6
Void Ratio	1.504	0.95

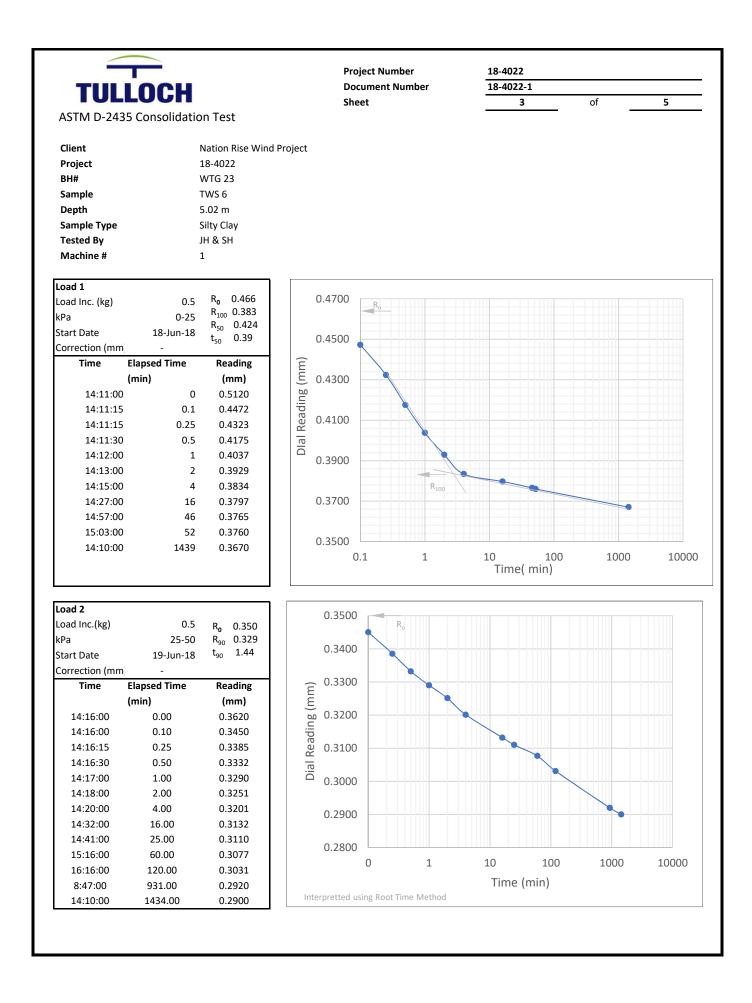
Legend

N/A not applicable

Hanger Load	Pressure	Change in	New Height	Strain	Void Height	Void Ratio	t-50/t-90	Cv
Kg	kPa	mm	mm	%	mm	е	min	m²/y
0.5	25	0.099	14.901	0.66%	89.901	1.487	0.35	16.2
1	50	0.060	14.841	0.40%	89.841	1.477	1.44	17.2
2	100	0.142	14.699	0.96%	89.699	1.454	0.35	15.6
4	200	1.646	13.053	11.20%	88.053	1.179	14	0.4
8	400	1.624	11.429	12.44%	86.429	0.909	3.1	1.1
4	200	-0.0579	11.487	-0.51%	86.487	0.918	-	-
2	100	-0.1831	11.670	-1.59%	86.670	0.949	-	-

 Moisture Before Test


 Tin I.D.
 01


 Tare (g)
 0.4

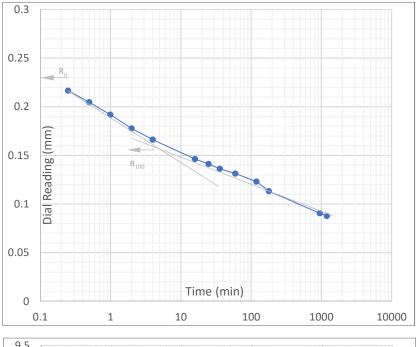
 Tare + WS (g)
 54.9

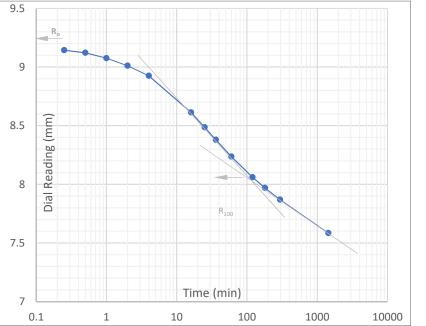
 Tare + DS (g)
 43.5

 % Moist
 26.5%

Project Number
Document Number

Sheet



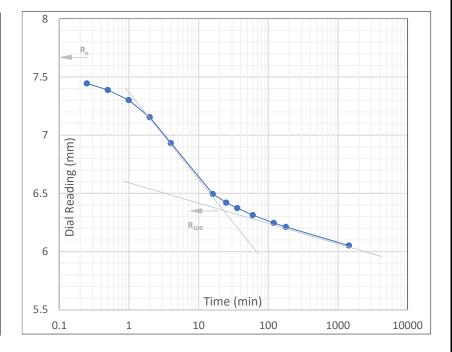

ASTM D-2435 Consolidation Test

Client	Nation Rise Wind Project
Project	18-4022
BH#	WTG 23
Sample	TWS 6
Depth	5.02 m
Sample Type	Silty Clay
Tested By	JH
Machine #	1

1		
Load 3		
Load Inc.lbs	1	R ₀ 0.23
kPa	50-100	R_{100} 0.158
Start Date	20-Jun-18	R ₅₀ 0.194
Correction (mm	-	t ₅₀ 0.35
Time	Elapsed Time	Reading
	(min)	(mm)
14:28:00	0	0.2919
14:28:15	0.25	0.2165
14:28:30	0.5	0.2047
14:29:00	1	0.1918
14:30:00	2	0.1776
14:32:00	4	0.1661
14:44:00	16	0.1462
14:53:00	25	0.1412
15:04:00	36	0.1362
15:28:00	60	0.1312
16:28:00	120	0.1231
17:28:00	180	0.1131
+1d, 6:56:00	956	0.0904
12:28:00	1202	0.0876

Load 4		D 0.22
Load Inc.lbs	2	R ₀ 9.23 R ₁₀₀ 8.05
kPa	100-200	R ₁₀₀ 8.05 R ₅₀ 8.64
Start Date	21-Jun-18	t ₅₀ 14
Correction (mm	-	
Time	Elapsed Time	Reading
	(min)	(mm)
12:30:00	0	9.2358
12:30:15	0.25	9.1429
12:30:30	0.5	9.120
12:31:00	1	9.0743
12:32:00	2	9.010
12:34:00	4	8.9243
12:46:00	16	8.612
12:55:00	25	8.485
13:06:00	36	8.378
13:30:00	60	8.236
14:30:00	120	8.0598
15:30:00	180	7.9693
17:25:00	295	7.8693
1d + 12:30:00	1440	7.5843

Project Number Document Number


Sheet

ASTM D-2435 Consolidation Test

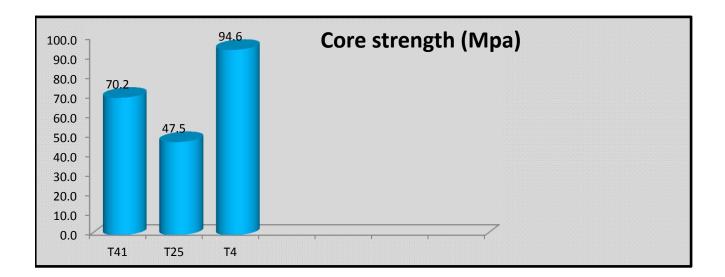
Client	Nation Rise Wind Project
Project	18-4022
BH#	WTG 23
Sample	TWS 6
Depth	5.02 m
Sample Type	Silty Clay
Tested By	JH & SH
Machine #	1

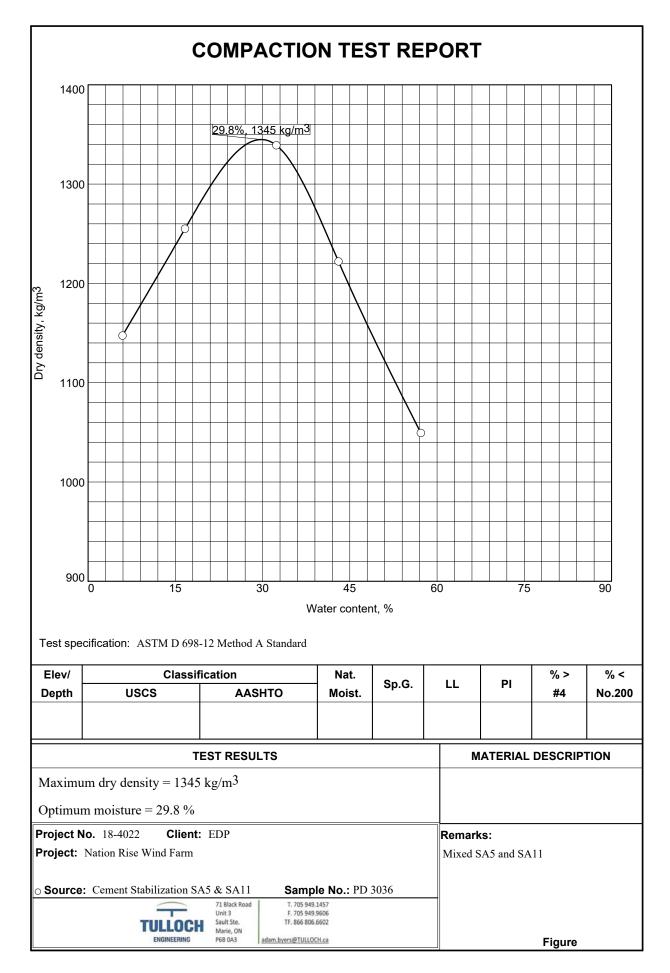
Load 5		
Load Inc.(kg)	4	R ₀ 7.675
kPa	200-400	R ₁₀₀ 6.36 R ₅₀ 7.018
Start Date	22-Jun-18	R ₅₀ 7.018 t ₅₀ 3.1
Correction (mm)	-	C ₅₀ 0.1
Time	Elapsed Time	Reading
	(min)	(mm)
13:00:00	0	7.5837
13:00:15	0.25	7.4441
13:00:30	0.5	7.3882
13:01:00	1	7.3018
13:02:00	2	7.1542
13:04:00	4	6.9314
13:16:00	16	6.4945
13:25:00	25	6.4199
13:36:00	36	6.374
14:00:00	60	6.3128
15:00:00	120	6.2456
16:00:00	180	6.2117
1d + 13:00:00	1440	6.0511

Load 6		
Load Inc. (kg)	4	
kPa	400-200	
Start Date	23-Jun-18	
Correction (mn	n)	
Time	Elapsed Time	Reading
	(min)	(mm)
14:28:00	ე 0	6.0511
14:28:00 13:00:00		6.0511 6.109

Load 7		
Load Inc. (kg)	4	
kPa 💦	200-100	
Start Date	24-Jun-18	
Correction (mm	-	
Time	Elapsed Time	Reading
Time	Elapsed Time (min)	Reading (mm)
Time 13:10:00	(min)	U U
	(min) 0	(mm)

ROCK CORE COMPRESSIVE STRENGTH


CSA A283 Certified Laboratory for Concrete Testing CCIL Certified Laboratory for Aggregates and Asphalt Testing CSA/CCIL Certified Technicians



Rock Core Compressive Strength Report

DATE SAMPLE	JECT: Nation Rise SAMPLED: Refer to Sample Log TESTED: Aug 10/18		Refer to Sample Log RUN BY:			
Sample Location	Run #	Distance from top of run (cm)	Height (mm)	Diameter (mm)	Peak Load (Ibs)	Compressive Stength (Mpa)
T41	3	63	94.92	47.46	27900	70.2
T25	3	79	94.90	47.45	18900	47.5
T4	4	73	93.98	46.99	36900	94.6
	1		1	1		

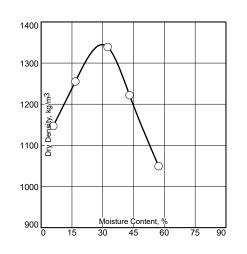
COMPACTION TEST REPORT

_ Checked By: T. Linley

MOISTURE DENSITY TEST DATA

Client: EDP

Project: Nation Rise Wind Farm
Project Number: 18-4022
Location: Cement Stabilization SA5 & SA11
Sample Number: PD 3036
Testing Remarks: Mixed SA5 and SA11
Tested by: D.Stadnisky


Checked by: T. Linley

Test Data and Results

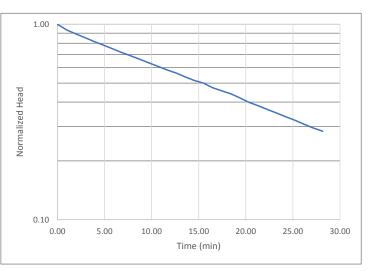
Test Specification:

Type of Test: ASTM D 698-12 Method A Standard

Mold Dia: 4.00 Hammer Wt.: 5.5 lb. Drop: 12 in. Layers: three Blows per Layer: 25

Point No.	1	2	3	4	5
Wt. M+S	5647.0	5882.0	6173.0	6150.0	6057.0
Wt. M	4500.0	4500.0	4500.0	4500.0	4500.0
Wt. W+T	295.4	275.1	292.4	298.6	372.2
Wt. D+T	287.6	260.1	260.9	254.0	296.0
Tare	155.7	170.1	163.6	150.4	162.8
Moist.	5.9	16.7	32.4	43.1	57.2
Dry Den.	1147	1255	1339	1222	1049

Test Results:


Max. Dry Den.= 1345 kg/m^3 Opt. Moist.= 29.8%

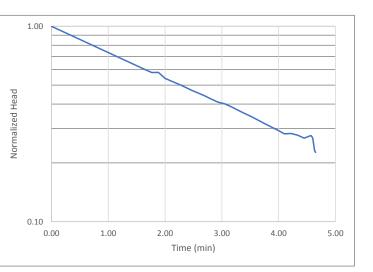
APPENDIX E

BOREHOLE FALLING HEAD TESTS

G6	
000 m	
0.869	m
1320	
335	
1.905	
10	
1.4E-05	
	000 m 0.869 1320 335 1.905 10

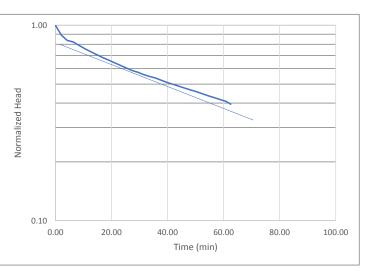
Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/9/2018	4:09:56 PM	0.00	3.0625	1.00	16.097
7/9/2018	4:10:55 PM	0.98	2.9224	0.94	15.321
7/9/2018	4:11:53 PM	1.95	2.8272	0.89	15.047
7/9/2018	4:12:51 PM	2.92	2.7425	0.85	14.904
7/9/2018	4:13:49 PM	3.88	2.661	0.82	14.812
7/9/2018	4:14:47 PM	4.85	2.5876	0.78	14.743
7/9/2018	4:16:44 PM	6.80	2.4452	0.72	14.621
7/9/2018	4:17:42 PM	7.77	2.3832	0.69	14.567
7/9/2018	4:18:40 PM	8.73	2.3221	0.66	14.511
7/9/2018	4:19:38 PM	9.70	2.2612	0.63	14.457
7/9/2018	4:20:36 PM	10.67	2.2063	0.61	14.415
7/9/2018	4:21:34 PM	11.63	2.1504	0.58	14.373
7/9/2018	4:22:32 PM	12.60	2.1034	0.56	14.329
7/9/2018	4:23:30 PM	13.57	2.0501	0.54	14.29
7/9/2018	4:24:28 PM	14.53	2.0011	0.52	14.257
7/9/2018	4:25:26 PM	15.50	1.9654	0.50	14.228
7/9/2018	4:26:24 PM	16.47	1.9084	0.47	14.198
7/9/2018	4:27:22 PM	17.43	1.8702	0.46	14.172
7/9/2018	4:28:20 PM	18.40	1.8356	0.44	14.195
7/9/2018	4:29:18 PM	19.37	1.7908	0.42	14.208
7/9/2018	4:30:16 PM	20.33	1.7442	0.40	14.19
7/9/2018	4:31:14 PM	21.30	1.7101	0.38	14.162
7/9/2018	4:32:12 PM	22.27	1.6741	0.37	14.132
7/9/2018	4:33:10 PM	23.23	1.6408	0.35	14.102
7/9/2018	4:34:08 PM	24.20	1.6086	0.34	14.077
7/9/2018	4:35:06 PM	25.17	1.5785	0.32	14.059
7/9/2018	4:36:04 PM	26.13	1.5459	0.31	14.044
7/9/2018	4:37:02 PM	27.10	1.5166	0.30	14.031
7/9/2018	4:38:00 PM	28.07	1.4936	0.28	14.024
7/9/2018	4:38:01 PM	28.08	1.4928	0.28	14.024
7/9/2018	4:38:06 PM	28.17	1.49	0.28	14.024

0.15

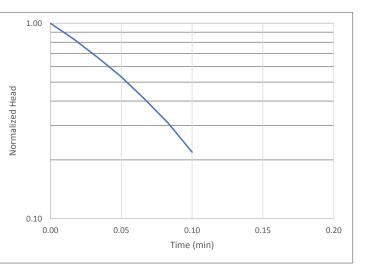

0.20

K (cm/s)	4.0E-03			0.	00	0.0	15	0.1 Time	
R (cm)	3.8			0.10	00	0.0		0.0	10
r (cm)	1.905			0.10					
L (cm)	335								
T _L (s)	6								
Но	7.08	m	Ž						
UNIT: °C			Drmö						
FEMPERATURE			alize						
Offset: -10.331			H pa					$\boldsymbol{\nu}$	
JNIT: m			Normalized Head				$\overline{}$		
EVEL									
Nation Rise W1	rG41					\sim			
Location:									
184022									
Project ID:				1.00					

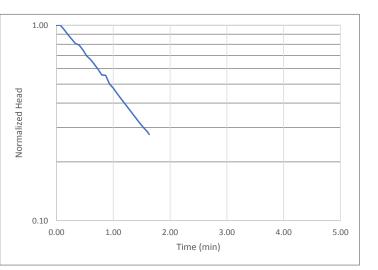
Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/6/2018	10:07:39 AM	0.00	7.1961	1.00	10.527
7/6/2018	10:07:40 AM	0.02	7.1797	0.86	10.508
7/6/2018	10:07:41 AM	0.03	7.166	0.74	10.489
7/6/2018	10:07:42 AM	0.05	7.1538	0.64	10.471
7/6/2018	10:07:43 AM	0.07	7.1486	0.59	10.453
7/6/2018	10:07:44 AM	0.08	7.1225	0.37	10.434


G4				
)00 m				
TEMPERATURE				
3.8705	m			
204				
335				
1.905				
3.8				
1.2E-04				
	000 m 3.8705 204 335 1.905 3.8			

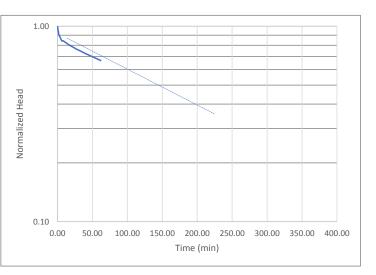
Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/6/2018	11:40:40 AM	0.00	5.7574	1.00	16.116
7/6/2018	11:42:19 AM	1.65	5.003	0.60	11.074
7/6/2018	11:42:26 AM	1.77	4.9656	0.58	10.933
7/6/2018	11:42:33 AM	1.88	4.9671	0.58	10.804
7/6/2018	11:42:40 AM	2.00	4.8911	0.54	10.686
7/6/2018	11:42:47 AM	2.12	4.8571	0.52	10.577
7/6/2018	11:42:54 AM	2.23	4.8257	0.51	10.476
7/6/2018	11:43:01 AM	2.35	4.7926	0.49	10.383
7/6/2018	11:43:08 AM	2.47	4.7581	0.47	10.297
7/6/2018	11:43:15 AM	2.58	4.7296	0.46	10.217
7/6/2018	11:43:22 AM	2.70	4.7007	0.44	10.142
7/6/2018	11:43:29 AM	2.82	4.6705	0.42	10.072
7/6/2018	11:43:36 AM	2.93	4.6427	0.41	10.007
7/6/2018	11:43:43 AM	3.05	4.6275	0.40	9.946
7/6/2018	11:43:50 AM	3.17	4.6005	0.39	9.885
7/6/2018	11:43:57 AM	3.28	4.5728	0.37	9.825
7/6/2018	11:44:04 AM	3.40	4.5466	0.36	9.765
7/6/2018	11:44:11 AM	3.52	4.5215	0.35	9.708
7/6/2018	11:44:18 AM	3.63	4.4958	0.33	9.653
7/6/2018	11:44:25 AM	3.75	4.4706	0.32	9.602
7/6/2018	11:44:32 AM	3.87	4.4469	0.31	9.554
7/6/2018	11:44:39 AM	3.98	4.4253	0.29	9.508
7/6/2018	11:44:46 AM	4.10	4.4017	0.28	9.463
7/6/2018	11:44:53 AM	4.22	4.4039	0.28	9.421
7/6/2018	11:45:00 AM	4.33	4.3935	0.28	9.38
7/6/2018	11:45:07 AM	4.45	4.3751	0.27	9.34
7/6/2018	11:45:14 AM	4.57	4.3915	0.28	9.302
7/6/2018	11:45:15 AM	4.58	4.384	0.27	9.297
7/6/2018	11:45:16 AM	4.60	4.3763	0.27	9.292
7/6/2018	11:45:18 AM	4.63	4.3054	0.23	9.28
7/6/2018	11:45:19 AM	4.65	4.2974	0.23	9.275


	1
G5	
000 m	
5.1467	m
4200	
335	
1.905	
10	
4.5E-06	
	000 m 5.1467 4200 335 1.905 10

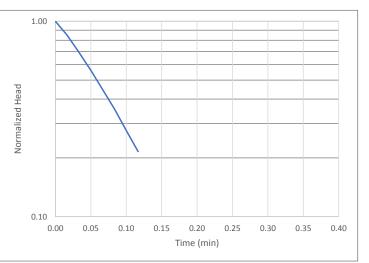
Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/7/2018	9:10:28 AM	0.00	6.2919	1.00	13.286
7/7/2018	9:12:34 AM	2.10	6.1665	0.89	9.593
7/7/2018	9:14:40 AM	4.20	6.1051	0.84	8.838
7/7/2018	9:16:46 AM	6.30	6.089	0.82	8.565
7/7/2018	9:18:52 AM	8.40	6.0507	0.79	8.39
7/7/2018	9:20:58 AM	10.50	6.0159	0.76	8.246
7/7/2018	9:23:04 AM	12.60	5.985	0.73	8.117
7/7/2018	9:25:10 AM	14.70	5.9577	0.71	8
7/7/2018	9:27:16 AM	16.80	5.9304	0.68	7.901
7/7/2018	9:29:22 AM	18.90	5.907	0.66	7.813
7/7/2018	9:31:28 AM	21.00	5.8844	0.64	7.76
7/7/2018	9:33:34 AM	23.10	5.8616	0.62	7.736
7/7/2018	9:35:40 AM	25.20	5.8397	0.61	7.721
7/7/2018	9:37:46 AM	27.30	5.8198	0.59	7.71
7/7/2018	9:39:52 AM	29.40	5.805	0.57	7.706
7/7/2018	9:41:58 AM	31.50	5.7871	0.56	7.712
7/7/2018	9:44:04 AM	33.60	5.7736	0.55	7.731
7/7/2018	9:46:10 AM	35.70	5.7624	0.54	7.753
7/7/2018	9:48:16 AM	37.80	5.7455	0.52	7.77
7/7/2018	9:50:22 AM	39.90	5.7295	0.51	7.786
7/7/2018	9:52:28 AM	42.00	5.7177	0.50	7.8
7/7/2018	9:54:34 AM	44.10	5.7045	0.49	7.81
7/7/2018	9:56:40 AM	46.20	5.6921	0.48	7.819
7/7/2018	9:58:46 AM	48.30	5.681	0.47	7.821
7/7/2018	10:00:52 AM	50.40	5.6695	0.46	7.821
7/7/2018	10:02:58 AM	52.50	5.6573	0.45	7.818
7/7/2018	10:05:04 AM	54.60	5.6452	0.44	7.817
7/7/2018	10:07:10 AM	56.70	5.635	0.43	7.816
7/7/2018	10:09:16 AM	58.80	5.6241	0.42	7.812
7/7/2018	10:11:22 AM	60.90	5.614	0.41	7.808
7/7/2018	10:13:01 AM	62.55	5.5985	0.39	7.805


Project ID:		
184022		
Location:		
Nation Rise WT	G6	
LEVEL		
UNIT: m		
Offset: -10.331	000 m	
TEMPERATURE		
UNIT: °C		
Но	3.062	m
T _L (s)	4.8	
L (cm)	335	
r (cm)	1.905	
R (cm)	3.8	
K (cm/s)	5.1E-03	

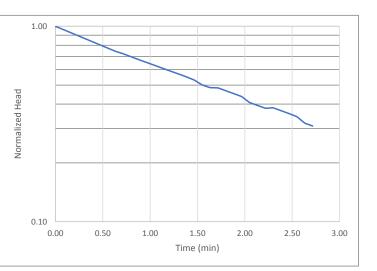
Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/6/2018	2:06:00 PM	0.00	3.7831	1.00	12.469
7/6/2018	2:06:01 PM	0.02	3.6597	0.83	12.427
7/6/2018	2:06:02 PM	0.03	3.5444	0.67	12.387
7/6/2018	2:06:03 PM	0.05	3.4455	0.53	12.346
7/6/2018	2:06:04 PM	0.07	3.3563	0.41	12.306
7/6/2018	2:06:05 PM	0.08	3.2836	0.31	12.267
7/6/2018	2:06:06 PM	0.10	3.22	0.22	12.228


Project ID:		
184022		
Location:		
Nation Rise WT	G7	
LEVEL		
UNIT: m		
Offset: -10.331	000 m	
TEMPERATURE		
UNIT: °C		
Но	6.516	m
T _L (s)	76.8	
L (cm)	335	
r (cm)	1.905	
R (cm)	3.8	
K (cm/s)	3.2E-04	
•	•	

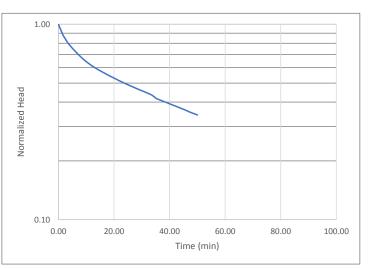
Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/6/2018	12:55:11 PM	0.00	8.1892	1.00	12.566
7/6/2018	12:55:15 PM	0.07	8.1949	1.00	12.352
7/6/2018	12:55:19 PM	0.13	8.1083	0.95	12.154
7/6/2018	12:55:23 PM	0.20	8.0183	0.90	11.968
7/6/2018	12:55:27 PM	0.27	7.9403	0.85	11.794
7/6/2018	12:55:31 PM	0.33	7.8645	0.81	11.632
7/6/2018	12:55:35 PM	0.40	7.8423	0.79	11.48
7/6/2018	12:55:39 PM	0.47	7.7665	0.75	11.338
7/6/2018	12:55:43 PM	0.53	7.6827	0.70	11.205
7/6/2018	12:55:47 PM	0.60	7.6343	0.67	11.081
7/6/2018	12:55:51 PM	0.67	7.5738	0.63	10.963
7/6/2018	12:55:55 PM	0.73	7.512	0.60	10.853
7/6/2018	12:55:59 PM	0.80	7.4478	0.56	10.749
7/6/2018	12:56:03 PM	0.87	7.4434	0.55	10.651
7/6/2018	12:56:07 PM	0.93	7.3534	0.50	10.559
7/6/2018	12:56:11 PM	1.00	7.3141	0.48	10.473
7/6/2018	12:56:15 PM	1.07	7.2652	0.45	10.39
7/6/2018	12:56:19 PM	1.13	7.2226	0.42	10.312
7/6/2018	12:56:23 PM	1.20	7.1825	0.40	10.239
7/6/2018	12:56:27 PM	1.27	7.1455	0.38	10.169
7/6/2018	12:56:31 PM	1.33	7.1093	0.35	10.103
7/6/2018	12:56:35 PM	1.40	7.077	0.34	10.041
7/6/2018	12:56:39 PM	1.47	7.044	0.32	9.982
7/6/2018	12:56:43 PM	1.53	7.0165	0.30	9.926
7/6/2018	12:56:47 PM	1.60	6.9941	0.29	9.873
7/6/2018	12:56:48 PM	1.62	6.9858	0.28	9.861
7/6/2018	12:56:49 PM	1.63	6.978	0.28	9.848


1	
1	
1	
1	
1	
١	
۱	
3.118	m
12600	
335	
1.905	
10	
1.5E-06	
	12600 335 1.905 10

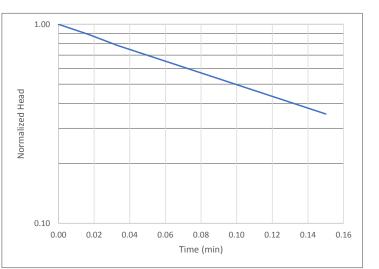
Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/9/2018	7:08:41 PM	0.00	4.9681	1.00	12.597
7/9/2018	7:10:47 PM	2.10	4.7868	0.90	10.242
7/9/2018	7:12:53 PM	4.20	4.7352	0.87	9.65
7/9/2018	7:14:59 PM	6.30	4.6753	0.84	9.334
7/9/2018	7:17:05 PM	8.40	4.6773	0.84	9.107
7/9/2018	7:19:11 PM	10.50	4.6557	0.83	8.989
7/9/2018	7:21:17 PM	12.60	4.6387	0.82	8.922
7/9/2018	7:23:23 PM	14.70	4.6201	0.81	8.854
7/9/2018	7:25:29 PM	16.80	4.6026	0.80	8.799
7/9/2018	7:27:35 PM	18.90	4.5875	0.79	8.741
7/9/2018	7:29:41 PM	21.00	4.5737	0.79	8.688
7/9/2018	7:31:47 PM	23.10	4.5598	0.78	8.662
7/9/2018	7:33:52 PM	25.18	4.5451	0.77	8.647
7/9/2018	7:35:57 PM	27.27	4.5328	0.76	8.677
7/9/2018	7:38:02 PM	29.35	4.5204	0.76	8.739
7/9/2018	7:40:07 PM	31.43	4.5075	0.75	8.815
7/9/2018	7:42:12 PM	33.52	4.4963	0.74	8.827
7/9/2018	7:44:17 PM	35.60	4.4852	0.74	8.841
7/9/2018	7:46:22 PM	37.68	4.4734	0.73	8.844
7/9/2018	7:48:27 PM	39.77	4.4613	0.73	8.856
7/9/2018	7:50:32 PM	41.85	4.4509	0.72	8.859
7/9/2018	7:52:37 PM	43.93	4.441	0.72	8.841
7/9/2018	7:54:42 PM	46.02	4.43	0.71	8.831
7/9/2018	7:56:47 PM	48.10	4.4203	0.70	8.817
7/9/2018	7:58:52 PM	50.18	4.4091	0.70	8.818
7/9/2018	8:00:57 PM	52.27	4.3996	0.69	8.809
7/9/2018	8:03:02 PM	54.35	4.3893	0.69	8.787
7/9/2018	8:05:07 PM	56.43	4.3798	0.68	8.768
7/9/2018	8:07:12 PM	58.52	4.3701	0.68	8.751
7/9/2018	8:09:17 PM	60.60	4.3633	0.67	8.744
7/9/2018	8:10:30 PM	61.82	4.3524	0.67	8.74


Project ID:		
184022		
Location:		
Nation Rise WT	G6	
LEVEL		
UNIT: m		
Offset: -10.331	000 m	
TEMPERATURE		
UNIT: °C		
Но	5.9167	m
T _L (s)	4.8	
L (cm)	335	
r (cm)	2.54	
R (cm)	10	
K (cm/s)	7.0E-03	

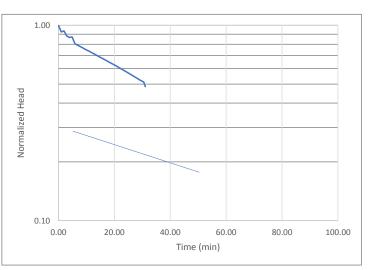
Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/7/2018	11:11:07 AM	0.00	6.1839	1.00	8.778
7/7/2018	11:11:08 AM	0.02	6.143	0.85	8.77
7/7/2018	11:11:09 AM	0.03	6.102	0.69	8.763
7/7/2018	11:11:10 AM	0.05	6.0666	0.56	8.755
7/7/2018	11:11:11 AM	0.07	6.0362	0.45	8.747
7/7/2018	11:11:12 AM	0.08	6.0117	0.36	8.74
7/7/2018	11:11:13 AM	0.10	5.9905	0.28	8.732
7/7/2018	11:11:14 AM	0.12	5.9743	0.22	8.725


Project ID:		
184022		
Location:		
Nation Rise WT	G25	
LEVEL		
UNIT: m		
Offset: -10.331	000 m	
TEMPERATURE		
UNIT: °C		
Но	2.664	m
T _L (s)	144	
L (cm)	335	
r (cm)	1.905	
R (cm)	3.8	
K (cm/s)	1.7E-04	
Ho T _L (s) L (cm) r (cm) R (cm)	144 335 1.905 3.8	m

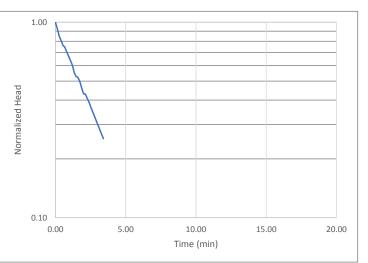
Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/9/2018	5:34:38 PM	0.00	4.8736	1.00	10.473
7/9/2018	5:35:16 PM	0.63	4.3093	0.74	9.816
7/9/2018	5:35:21 PM	0.72	4.262	0.72	9.755
7/9/2018	5:35:26 PM	0.80	4.2055	0.70	9.698
7/9/2018	5:35:31 PM	0.88	4.153	0.67	9.646
7/9/2018	5:35:36 PM	0.97	4.1042	0.65	9.598
7/9/2018	5:35:41 PM	1.05	4.0564	0.63	9.552
7/9/2018	5:35:46 PM	1.13	4.0112	0.61	9.51
7/9/2018	5:35:51 PM	1.22	3.9665	0.59	9.47
7/9/2018	5:35:56 PM	1.30	3.924	0.57	9.432
7/9/2018	5:36:01 PM	1.38	3.8824	0.55	9.396
7/9/2018	5:36:06 PM	1.47	3.8369	0.53	9.362
7/9/2018	5:36:11 PM	1.55	3.7698	0.50	9.33
7/9/2018	5:36:16 PM	1.63	3.7362	0.49	9.298
7/9/2018	5:36:21 PM	1.72	3.7336	0.48	9.269
7/9/2018	5:36:26 PM	1.80	3.6971	0.47	9.24
7/9/2018	5:36:31 PM	1.88	3.6632	0.45	9.213
7/9/2018	5:36:36 PM	1.97	3.6292	0.44	9.187
7/9/2018	5:36:41 PM	2.05	3.5642	0.41	9.162
7/9/2018	5:36:46 PM	2.13	3.5341	0.39	9.138
7/9/2018	5:36:51 PM	2.22	3.5053	0.38	9.114
7/9/2018	5:36:56 PM	2.30	3.5096	0.38	9.092
7/9/2018	5:37:01 PM	2.38	3.4812	0.37	9.07
7/9/2018	5:37:06 PM	2.47	3.4541	0.36	9.05
7/9/2018	5:37:11 PM	2.55	3.4254	0.34	9.029
7/9/2018	5:37:16 PM	2.63	3.3694	0.32	9.01
7/9/2018	5:37:21 PM	2.72	3.3465	0.31	8.991


Due est ID.		
Project ID:		
184022		
Location:		
Nation Rise WT	G 28	
LEVEL		
UNIT: m		
Offset: -10.323	000 m	
TEMPERATURE		
UNIT: °C		
Но	6.9775	m
T _L (s)	2700	
L (cm)	335	
r (cm)	1.905	
R (cm)	10	
K (cm/s)	7.0E-06	

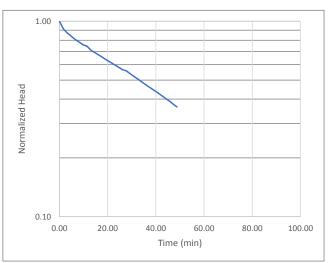
Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/5/2018	10:30:33 AM	0.00	9.273	1.00	14.077
7/5/2018	10:32:14 AM	1.68	8.9893	0.88	10.479
7/5/2018	10:33:55 AM	3.37	8.8204	0.80	9.618
7/5/2018	10:35:36 AM	5.05	8.7058	0.75	9.334
7/5/2018	10:37:17 AM	6.73	8.6062	0.71	9.104
7/5/2018	10:38:58 AM	8.42	8.5221	0.67	8.924
7/5/2018	10:40:39 AM	10.10	8.4513	0.64	8.786
7/5/2018	10:42:20 AM	11.78	8.3933	0.62	8.675
7/5/2018	10:44:01 AM	13.47	8.3441	0.60	8.586
7/5/2018	10:45:42 AM	15.15	8.3007	0.58	8.517
7/5/2018	10:47:23 AM	16.83	8.262	0.56	8.461
7/5/2018	10:49:04 AM	18.52	8.2248	0.54	8.413
7/5/2018	10:50:45 AM	20.20	8.1913	0.53	8.373
7/5/2018	10:52:26 AM	21.88	8.1582	0.51	8.336
7/5/2018	10:54:07 AM	23.57	8.1284	0.50	8.305
7/5/2018	10:55:48 AM	25.25	8.0995	0.49	8.281
7/5/2018	10:57:29 AM	26.93	8.0728	0.48	8.262
7/5/2018	10:59:10 AM	28.62	8.0472	0.47	8.248
7/5/2018	11:00:51 AM	30.30	8.0228	0.46	8.236
7/5/2018	11:02:32 AM	31.98	8	0.45	8.227
7/5/2018	11:04:13 AM	33.67	7.9742	0.43	8.22
7/5/2018	11:05:54 AM	35.35	7.9325	0.42	8.207
7/5/2018	11:07:35 AM	37.03	7.9126	0.41	8.193
7/5/2018	11:09:16 AM	38.72	7.8922	0.40	8.193
7/5/2018	11:10:57 AM	40.40	7.8722	0.39	8.196
7/5/2018	11:12:38 AM	42.08	7.8531	0.38	8.199
7/5/2018	11:14:19 AM	43.77	7.8344	0.37	8.2
7/5/2018	11:16:00 AM	45.45	7.8162	0.37	8.198
7/5/2018	11:17:41 AM	47.13	7.7943	0.36	8.197
7/5/2018	11:19:22 AM	48.82	7.7772	0.35	8.191
7/5/2018	11:20:34 AM	50.02	7.7663	0.34	8.183


		1
Project ID:		
184022		
Location:		
Nation Rise WT	G41	
LEVEL		
UNIT: m		
Offset: -10.331	000 m	
TEMPERATURE		
UNIT: °C		
Но	6.15	m
T _L (s)	7.8	
L (cm)	335	
r (cm)	1.905	
R (cm)	3.8	
K (cm/s)	3.1E-03	

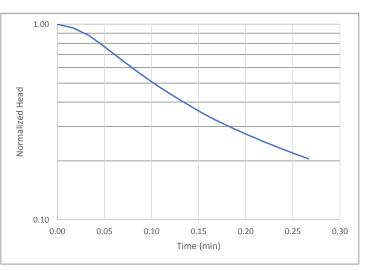
Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/6/2018	3:23:01 PM	0.00	6.3072	1.00	10.979
7/6/2018	3:23:02 PM	0.02	6.29	0.89	10.948
7/6/2018	3:23:03 PM	0.03	6.273	0.78	10.917
7/6/2018	3:23:10 PM	0.15	6.2057	0.35	10.714


Project ID:		
,		
184022		
Location:		
Nation Rise WT	G 43	
LEVEL		
UNIT: m		
Offset: -10.331	000 m	
TEMPERATURE		
UNIT: °C		
Но	4.928	m
T _L (s)	3000	
L (cm)	335	
r (cm)	1.905	
R (cm)	10	
K (cm/s)	6.3E-06	

Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/5/2018	12:28:05 PM	0.00	6.1901	1.00	9.81
7/5/2018	12:29:04 PM	0.98	6.096	0.93	9.389
7/5/2018	12:30:03 PM	1.97	6.1092	0.94	9.188
7/5/2018	12:31:02 PM	2.95	6.0418	0.88	9.02
7/5/2018	12:32:01 PM	3.93	6.0223	0.87	8.919
7/5/2018	12:33:00 PM	4.92	6.0282	0.87	8.849
7/5/2018	12:33:59 PM	5.90	5.945	0.81	8.789
7/5/2018	12:34:58 PM	6.88	5.926	0.79	8.735
7/5/2018	12:35:57 PM	7.87	5.9096	0.78	8.685
7/5/2018	12:36:56 PM	8.85	5.892	0.76	8.642
7/5/2018	12:37:55 PM	9.83	5.8755	0.75	8.597
7/5/2018	12:38:54 PM	10.82	5.8602	0.74	8.55
7/5/2018	12:39:53 PM	11.80	5.8437	0.73	8.51
7/5/2018	12:40:52 PM	12.78	5.8292	0.71	8.476
7/5/2018	12:41:51 PM	13.77	5.8129	0.70	8.445
7/5/2018	12:42:50 PM	14.75	5.7966	0.69	8.418
7/5/2018	12:43:49 PM	15.73	5.7826	0.68	8.394
7/5/2018	12:44:49 PM	16.73	5.7675	0.67	8.371
7/5/2018	12:46:47 PM	18.70	5.7376	0.64	8.336
7/5/2018	12:47:46 PM	19.68	5.7239	0.63	8.32
7/5/2018	12:48:45 PM	20.67	5.7099	0.62	8.307
7/5/2018	12:49:44 PM	21.65	5.6948	0.61	8.296
7/5/2018	12:51:42 PM	23.62	5.666	0.58	8.276
7/5/2018	12:52:41 PM	24.60	5.6525	0.57	8.268
7/5/2018	12:53:40 PM	25.58	5.6389	0.56	8.26
7/5/2018	12:54:39 PM	26.57	5.6259	0.55	8.252
7/5/2018	12:55:38 PM	27.55	5.6118	0.54	8.246
7/5/2018	12:56:37 PM	28.53	5.5981	0.53	8.238
7/5/2018	12:57:36 PM	29.52	5.5851	0.52	8.232
7/5/2018	12:58:35 PM	30.50	5.5749	0.51	8.226
7/5/2018	12:59:10 PM	31.08	5.5407	0.49	8.223


-		
Project ID:		
184022		
Location:		
Nation Rise WT	G 44	
LEVEL		
UNIT: m		
Offset: -10.331	000 m	
TEMPERATURE		
UNIT: °C		
Но	4.5535	m
T _L (s)	150	
L (cm)	335	
r (cm)	1.905	
R (cm)	10	
K (cm/s)	1.3E-04	

Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/7/2018	1:10:06 PM	0.00	5.8781	1.00	10.587
7/7/2018	1:10:14 PM	0.13	5.7821	0.93	10.404
7/7/2018	1:10:22 PM	0.27	5.6809	0.85	10.235
7/7/2018	1:10:30 PM	0.40	5.6203	0.81	10.077
7/7/2018	1:10:38 PM	0.53	5.5642	0.76	9.932
7/7/2018	1:10:46 PM	0.67	5.5413	0.75	9.797
7/7/2018	1:10:54 PM	0.80	5.4897	0.71	9.675
7/7/2018	1:11:02 PM	0.93	5.4421	0.67	9.562
7/7/2018	1:11:10 PM	1.07	5.3972	0.64	9.458
7/7/2018	1:11:18 PM	1.20	5.3554	0.61	9.361
7/7/2018	1:11:26 PM	1.33	5.2872	0.55	9.271
7/7/2018	1:11:34 PM	1.47	5.253	0.53	9.189
7/7/2018	1:11:42 PM	1.60	5.2458	0.52	9.112
7/7/2018	1:11:50 PM	1.73	5.2118	0.50	9.042
7/7/2018	1:11:58 PM	1.87	5.1649	0.46	8.976
7/7/2018	1:12:06 PM	2.00	5.1237	0.43	8.916
7/7/2018	1:12:14 PM	2.13	5.1217	0.43	8.86
7/7/2018	1:12:22 PM	2.27	5.093	0.41	8.808
7/7/2018	1:12:30 PM	2.40	5.0676	0.39	8.759
7/7/2018	1:12:38 PM	2.53	5.0371	0.37	8.715
7/7/2018	1:12:46 PM	2.67	5.0118	0.35	8.674
7/7/2018	1:12:54 PM	2.80	4.9868	0.33	8.635
7/7/2018	1:13:02 PM	2.93	4.9634	0.31	8.599
7/7/2018	1:13:10 PM	3.07	4.9414	0.29	8.566
7/7/2018	1:13:18 PM	3.20	4.9209	0.28	8.535
7/7/2018	1:13:26 PM	3.33	4.9009	0.26	8.507
7/7/2018	1:13:27 PM	3.35	4.8985	0.26	8.503
7/7/2018	1:13:28 PM	3.37	4.8966	0.26	8.5
7/7/2018	1:13:29 PM	3.38	4.8933	0.26	8.496
7/7/2018	1:13:30 PM	3.40	4.8911	0.25	8.493
7/7/2018	1:13:31 PM	3.42	4.8899	0.25	8.49


Project ID:		
184022		
Location:		
Nation Rise WT	G 46	
LEVEL		
UNIT: m		
Offset: -10.331	000 m	
TEMPERATURE		
UNIT: °C		
Но	4.8585	m
T _L (s)	2910	
L (cm)	335	
r (cm)	1.905	
R (cm)	10	
K (cm/s)	6.5E-06	

Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/6/2018	6:05:03 PM	0.00	7.0951	1.00	11.307
7/6/2018	6:06:41 PM	1.63	6.9003	0.91	9.598
7/6/2018	6:08:19 PM	3.27	6.8067	0.87	8.972
7/6/2018	6:09:57 PM	4.90	6.7362	0.84	8.686
7/6/2018	6:11:35 PM	6.53	6.6652	0.81	8.529
7/6/2018	6:13:13 PM	8.17	6.6084	0.78	8.43
7/6/2018	6:14:51 PM	9.80	6.5539	0.76	8.367
7/6/2018	6:16:29 PM	11.43	6.5261	0.75	8.322
7/6/2018	6:18:07 PM	13.07	6.4494	0.71	8.287
7/6/2018	6:19:45 PM	14.70	6.4038	0.69	8.264
7/6/2018	6:21:23 PM	16.33	6.3604	0.67	8.252
7/6/2018	6:23:01 PM	17.97	6.3171	0.65	8.245
7/6/2018	6:24:39 PM	19.60	6.2756	0.63	8.24
7/6/2018	6:26:17 PM	21.23	6.2367	0.62	8.238
7/6/2018	6:27:55 PM	22.87	6.1977	0.60	8.237
7/6/2018	6:29:33 PM	24.50	6.1615	0.58	8.234
7/6/2018	6:31:11 PM	26.13	6.1233	0.57	8.227
7/6/2018	6:32:49 PM	27.77	6.1053	0.56	8.219
7/6/2018	6:34:27 PM	29.40	6.0642	0.54	8.211
7/6/2018	6:36:05 PM	31.03	6.024	0.52	8.204
7/6/2018	6:37:43 PM	32.67	5.9874	0.50	8.197
7/6/2018	6:39:21 PM	34.30	5.9493	0.49	8.19
7/6/2018	6:40:59 PM	35.93	5.9155	0.47	8.182
7/6/2018	6:42:37 PM	37.57	5.8825	0.46	8.177
7/6/2018	6:44:15 PM	39.20	5.8512	0.44	8.171
7/6/2018	6:45:53 PM	40.83	5.8204	0.43	8.164
7/6/2018	6:47:31 PM	42.47	5.7888	0.42	8.16
7/6/2018	6:49:09 PM	44.10	5.7583	0.40	8.156
7/6/2018	6:50:47 PM	45.73	5.7301	0.39	8.152
7/6/2018	6:52:25 PM	47.37	5.6982	0.38	8.148
7/6/2018	6:53:46 PM	48.72	5.6742	0.36	8.145

Project ID:							
184022							
Location:							
Nation Rise WTG48							
LEVEL							
UNIT: m							
Offset: -10.331000 m							
TEMPERATURE							
UNIT: °C							
Но	2.8576	m					
T _L (s)	9						
L (cm)	335						
r (cm)	1.905						
R (cm)	3.8						
K (cm/s)	2.7E-03						

Date	Time	Elapsed Time	LEVEL	Normalized	TEMPERATURE
		(min)		Head	
7/6/2018	4:27:48 PM	0.00	3.8181	1.00	12.993
7/6/2018	4:27:49 PM	0.02	3.7786	0.96	12.943
7/6/2018	4:27:50 PM	0.03	3.7006	0.88	12.896
7/6/2018	4:27:51 PM	0.05	3.595	0.77	12.849
7/6/2018	4:27:52 PM	0.07	3.4963	0.66	12.804
7/6/2018	4:27:53 PM	0.08	3.4146	0.58	12.76
7/6/2018	4:27:54 PM	0.10	3.3456	0.51	12.718
7/6/2018	4:27:55 PM	0.12	3.2896	0.45	12.678
7/6/2018	4:27:56 PM	0.13	3.2434	0.40	12.64
7/6/2018	4:27:57 PM	0.15	3.2034	0.36	12.603
7/6/2018	4:27:58 PM	0.17	3.1705	0.33	12.569
7/6/2018	4:27:59 PM	0.18	3.1441	0.30	12.537
7/6/2018	4:28:00 PM	0.20	3.1211	0.27	12.507
7/6/2018	4:28:01 PM	0.22	3.1012	0.25	12.478
7/6/2018	4:28:02 PM	0.23	3.084	0.24	12.452
7/6/2018	4:28:03 PM	0.25	3.0681	0.22	12.428
7/6/2018	4:28:04 PM	0.27	3.0544	0.20	12.405

APPENDIX F

GPR INTERNATIONAL MASW REPORT

6741 Columbus Road Unit 14 Mississauga, Ontario Canada L5T 2G9 Tel.: (905) 696-0656 Fax: (905) 696-0570 gprtor@gprtor.com www.geophysicsgpr.com

GPR file: T18743

July 31, 2018

Usman Khan Geotechnical Engineer **Tulloch Engineering Inc.** 1100 South Service Road, Suite 420 Stoney Creek, ON L8E 0C5

RE: Shear-wave velocity sounding at different locations in Chysler, North Stormont and North Dundas areas, Ottawa area, Ontario

Dear Mr. Khan:

Geophysics GPR International Inc. has been requested by Tulloch Enginnering Inc. to carry out a shear-wave velocity sounding at the above site in Ottawa. Figure 1 shows the location of the test profiles.

The survey was performed on July 4th to 6th, 2018.

The investigation included the multi-channel analysis of surface waves (MASW), the refraction methods to generate a shear-wave velocity model (Figures 4 to 10).

The following paragraphs describe the survey design, the principles of the test method, the methodology for interpreting the data, and provide a culmination of the results in table format.

Figure 1: Approximate location of the shear-wave velocity soundings

MASW and MAM Surveys

Basic Theory

The Multi-channel Analysis of Surface Waves (MASW) and the Micro-tremor Array Measurements (MAM) are seismic methods used to evaluate the shearwave velocities of subsurface materials through the analysis of the dispersion properties of Rayleigh surface waves ("ground roll"). The dispersion properties are measured as a change in phase velocity with frequency. Surface wave energy will decay exponentially with depth. Lower frequency surface waves will travel deeper and thus be more influenced by deeper velocity layering than the shallow higher frequency waves. Inversion of the Rayleigh wave dispersion curve yields a shear-wave (V_s) velocity depth profile (sounding). Figure 2 outlines the basic operating procedure for the MASW method. Figure 3 is an example image of a typical MASW record and resulting 1D V_s model. A more detailed description of the method can be found in the paper *Multi-channel Analysis of Surface Waves*, Park, C.B., Miller, R.D. and Xia, J. Geophysics, Vol. 64, No. 3 (May-June 1999); P. 800–808.

Survey Design

The geometry of an MASW survey is similar to that of a seismic refraction investigation (i.e. 24 geophones in a linear array). The fundamental principle involves intentionally generating an acoustic wave at the surface and digitally recording the surface waves from the moment of source impact with a linear series of geophones on the surface. This is referred to as an "active source" method. An elastic-wave hammer was used as the primary energy source with traces being recorded at 6 locations: approximately 6 m off both ends, 25 to 30 m off both ends, and in the middle of the spread. Data were collected with

geophones spacing of 3m and 1m for a total of 10 shot records per sounding.

Unlike the refraction method, which produces a data point beneath each geophone, the shear-wave depth profile is the average of the bulk area within the middle third of the geophone spread.

The theoretical maximum depth of penetration (34.5m) is half of the maximum seismic array length (69 m), in practice the maximum depth of penetration is often influenced by the geology.

The MAM/passive survey used the same geophone array set up as for the MASW survey. Unlike the MASW survey, the MAM method is considered a "passive source" method in that there is no time break and the motions recorded are from ambient energy generated by cultural noise such as traffic, wind, wave motion, etc. Data collection for the passive method involves recording approximately 10 minutes of background "noise." The records generated by the MAM method contain lower frequency data, thus increasing the data resolution at greater depths of investigation. Typically the MAM results aid in clarifying the MASW results for depths greater than 20 m; however, the direction of noise propagation relative to the spread orientation can influence the results.

Interpretation Method and Accuracy of Results

The main processing sequence involved plotting, picking, and 1-D inversion of the MASW/MAM shot records using the SeisimagerSWTM software package. In theory, all MASW shot records should produce a similar shear-wave velocity profile. In practice, however, differences can arise due to energy dissipation and localized surface variations. The results of the inversion process are inherently non-unique and the final model must be judged to be geologically realistic. The inversion modelling also assumes that all layering is flat/horizontal and laterally uniform.

The results of the MASW/MAM tests are presented in chart format as Figures 4 to 10. The chart presents the 1-D shear wave velocity values from the inversion models of the passive and active seismic records.

The V_s30 values for the sounding are presented in Table 1. The V_s30 values are based on the harmonic mean of the shear wave velocities over the upper 30 m. The V_s30 value is calculated by dividing the total depth of interest (e.g. 30 m) by the sum of the time spent in each velocity layer up to that depth. This harmonic mean value reflects the equivalent single layer response.

The estimated error in the average V_s30 value determined through MASW tests is typically +/-10 to 15% for overburden sites. The shear-wave velocities modelled through the MASW method within bedrock have a higher estimated error.

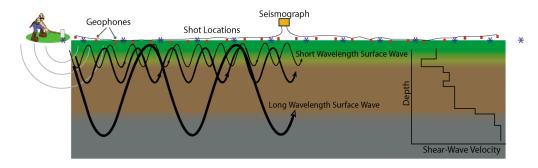


Figure 2: MASW Operating Principle

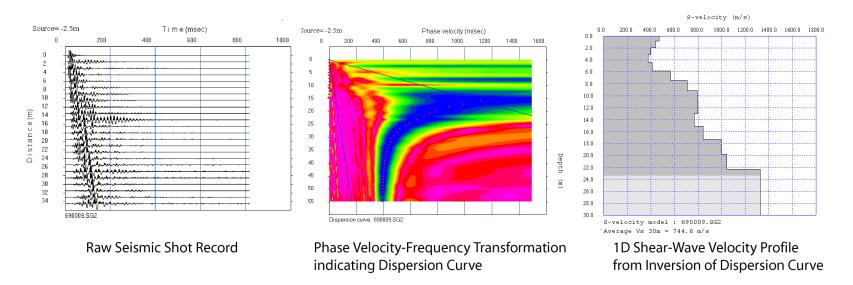
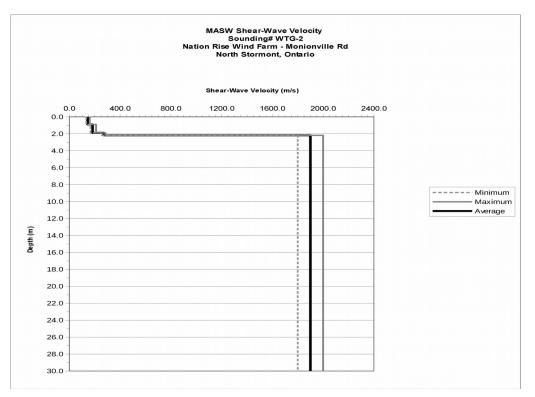
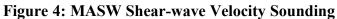




Figure 3: Example of a typical MASW shot record, phase velocity/frequency curve and resulting 1D shear-wave velocity model.

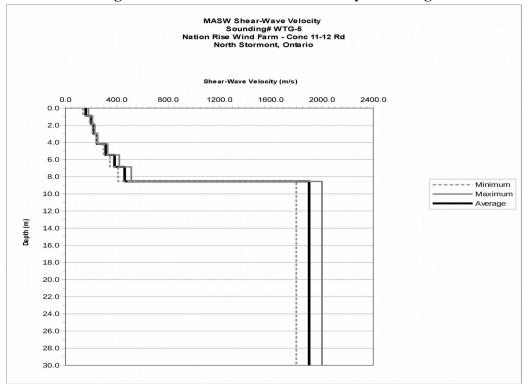
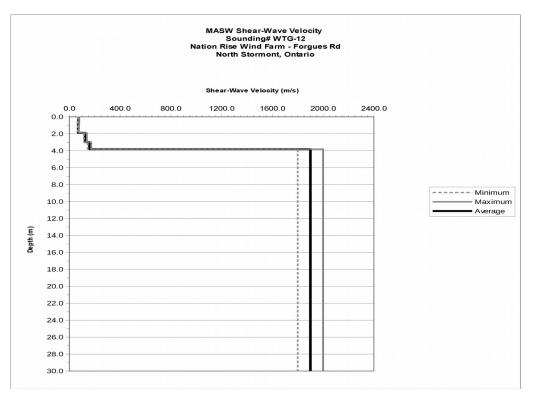



Figure 5: MASW Shear-wave Velocity Sounding

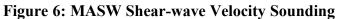
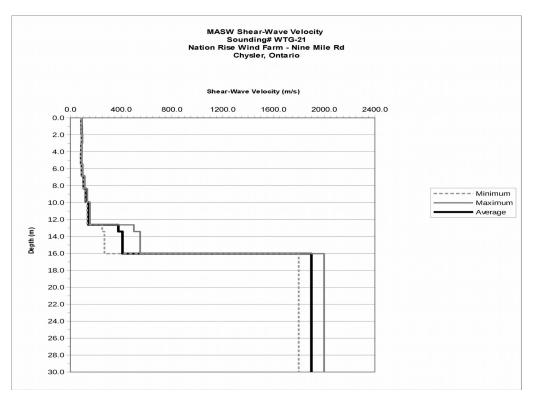
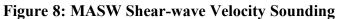




Figure 7: MASW Shear-wave Velocity Sounding

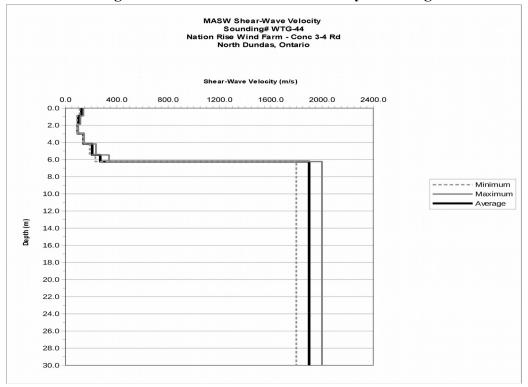


Figure 9: MASW Shear-wave Velocity Sounding

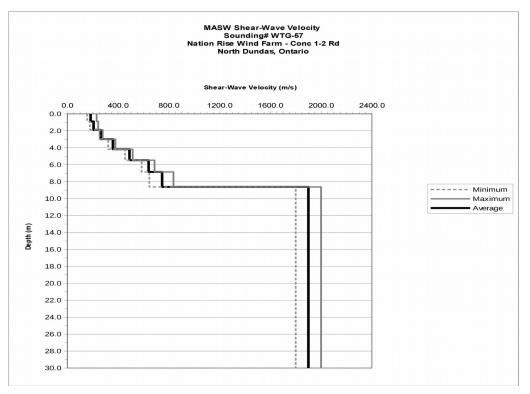


Figure 10: MASW Shear-wave Velocity Sounding

CONCLUSIONS

The approximate location of the shear-wave sounding is indicated in Figure 1.

The MASW shear-wave models are presented in Figure 4. The results are summarized in Table 1. The background seismic noise levels at this site were moderate. The quality of the seismic records was good. However, the resulting dispersion was not well defined as usual for sites with shallow bedrock.

The results of calculations from refracted P-waves are summarized in the attached drawing.

As is typical for sites with shallow rock, the shear-wave velocities modelled using the MASW method are often poorly constrained within the rock. Comparison with measured refracted P-wave velocities and estimates of Poisson's ratio can be used to better constrain the shear-wave models. The measured refracted P-wave velocities for the rock at this site were on the order of 5000m/s. These P-wave velocities correspond to an estimated S-wave velocity range of 1800 to 2000m/s.

The boreholes data were use for bedrock depth to constrain the MASW models.

	30m)				
Sounding	Minimum	Average	Maximum	Site Class	
WTG-2	1024	1096	1189	B *	
WTG-5	647	695	740	С	
WTG-12	510	553	595	С	
WTG-16	753	891	1004	C*	
WTG-21	200	216	232	D	
WTG-44	477	512	557	С	
WTG-57	767	843	927	C *	

Table 1: Calculated V_s30 values (m/s) from the MASW data (0 to 30m)

* NBC 2015 Commentary 'J' requirements

The calculated average V_s30 values from the 1D MASW soundings collected was 1096, 695, 553, 891, 216, 512, and 843m/s +/-15% to 20% respectively for WTG2 to WTG57.

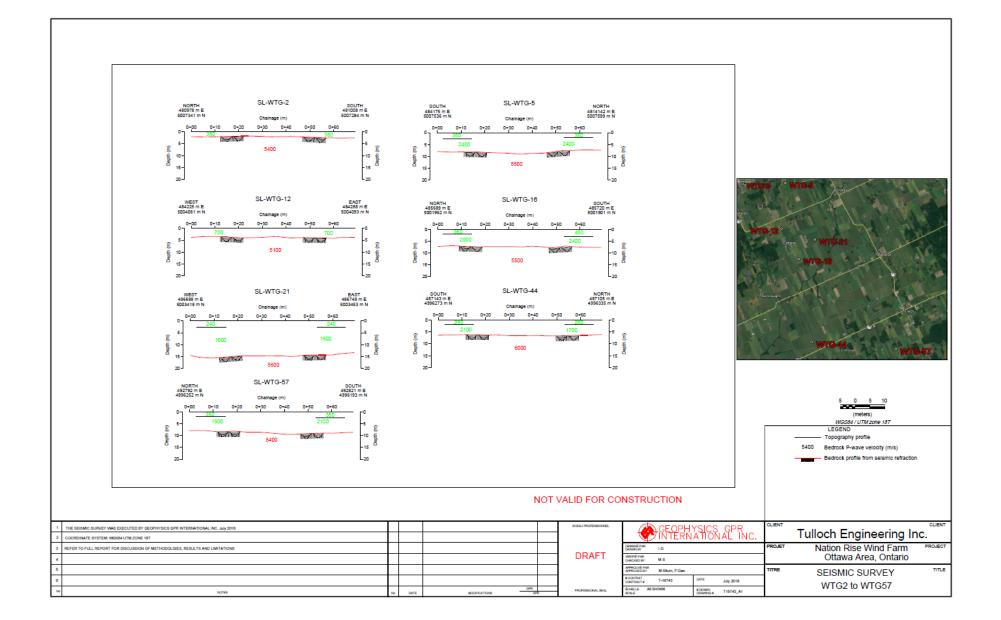
The V_s30 values calculated for the minimum and the maximum envelopes ranged from 216 to 1096m/s.

Based on the average V_s30 values (as determined through the MASW method) and table 4.1.8.4.A of the National Building Code of Canada, 2015 Edition, the investigated sites classes are summarized in the table 1.

The use of Site Class 'B' is conditional on the requirements of Commentary 'J' sentence 100, specifically, "Site Classes A and B, are not to be used if there is more than 3 m of soil between the rock surface and the bottom of the spread footing or

mat foundation, even if the computed average shear wave velocity is greater than 760m/s".

It must be noted that the site classification provided in this report is based solely on the V_s30 value as derived from the MASW method and that it can be superseded by other geotechnical information. This geotechnical information includes, but is not limited to, the presence of sensitive and/or liquefiable soils, more than 3m of soft clays, high moisture content, etc. The reader is referred to section 4.1.8.4 of the National Building Code of Canada, 2015 Edition for more information on the requirements for site classification.


This report has been written by Milan Situm, P.Geo.

Milan Situr

Milan Situm, P.Geo. Manager

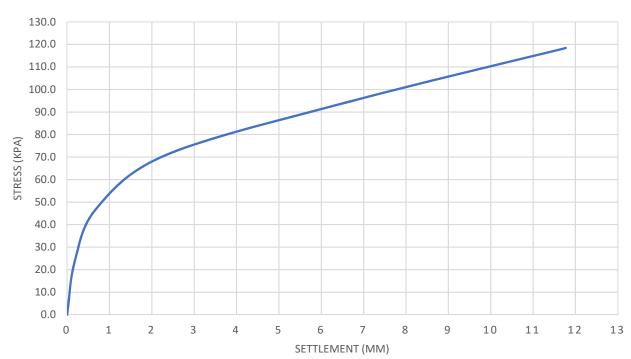
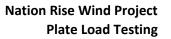
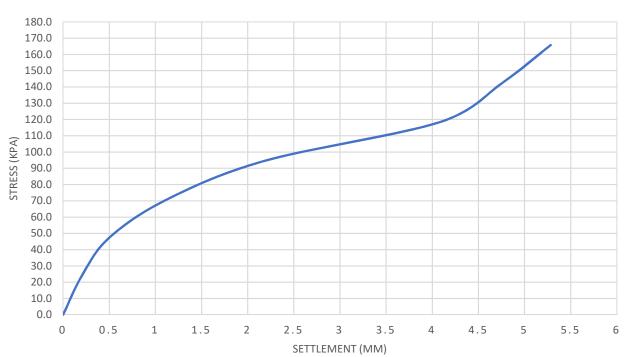

APPENDIX G

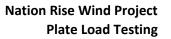
PLATE LOAD TEST RESULTS


Location:TP-PSR-4Material Type:Silt Till (ML)Plate Type:304.8 mm x 304.8 mmPlate Area (m²)0.09

Load (kN)	Settlement (mm)	Stress (kPa)	Notes
0	0	0.0	
2.2	0.18	23.7	
4.4	0.7	47.4	
6.6	2.349	71.0	
8.8	6.689	94.7	
11	11.769	118.4	Slight Creep

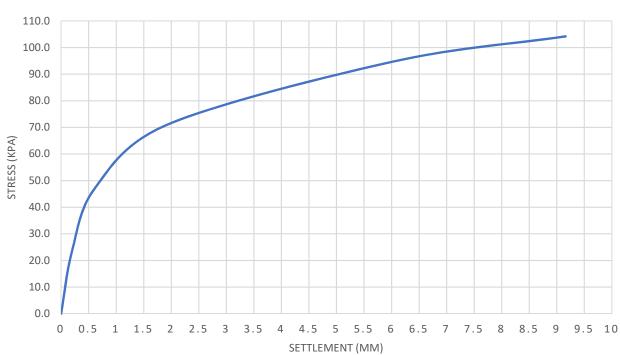
TP-PSR-4

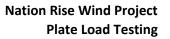

K _{secant} =	54 MPa/m	
M _R =	24 MPa	
CBR _{correlated} =	2.3	


Location:TP-PSR-5Material Type:Silt Till (ML)Plate Type:304.8 mm x 304.8 mmPlate Area (m²)0.09

Load (kN)	Settlement (mm)	Stress (kPa)	Notes
0	0	0.0	
2.2	0.2	23.7	
4.4	0.5	47.4	
6.6	1.132	71.0	
8.8	2.191	94.7	
11	4.082	118.4	Slight Creep
13.2	4.749	142.1	Slight Creep
15.4	5.283	165.8	

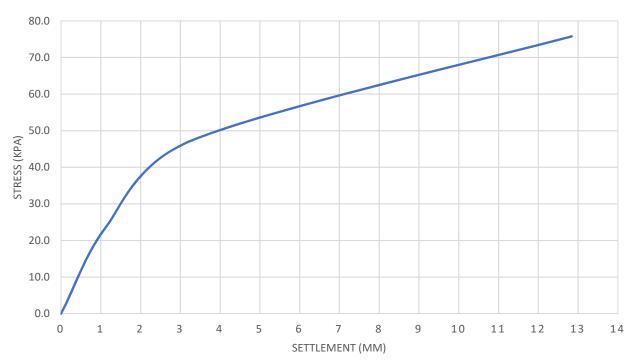
TP-PSR-5

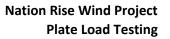

K _{secant} =	65 MPa/m	
K _{secant} = M _R =	29 MPa	4189.978
CBR _{correlated} =	2.8	


Location:TP-PSR-6Material Type:Silty Clay (CL)Plate Type:304.8 mm x 304.8 mmPlate Area (m²)0.09

Load (kN)	Settlement (mm)	Stress (kPa)	Notes
0	0	0.0	
2.2	0.2	23.7	
4.4	0.62	47.4	
6.6	1.93	71.0	
8.8	6.03	94.7	
9.68	9.16	104.2	Failing

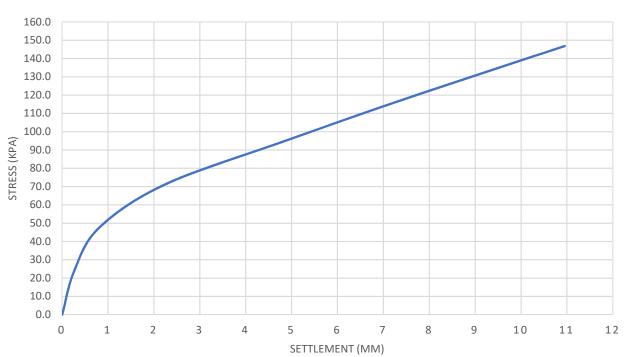
TP-PSR-6


K _{secant} =	58 MPa/m	
M _R =	26 MPa	
CBR _{correlated} =	2.5	


Location:TP-PSR-7Material Type:Silt Till (ML)Plate Type:304.8 mm x 304.8 mmPlate Area (m²)0.09

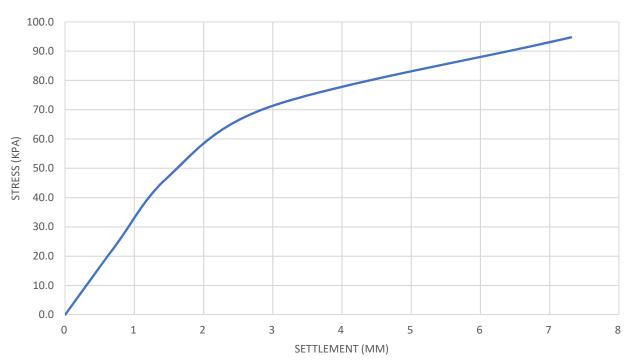
Load (kN)	Settlement (mm)	Stress (kPa)	Notes
0	0	0.0	
2.2	1.13	23.7	
4.4	3.29	47.4	
7.04	12.84	75.8	Creeping; possible failure

TP-PSR-7

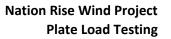

K _{secant} =	20 MPa/m	
K _{secant} = M _R =	9 MPa	
CBR _{correlated} =	0.9	

Location:TP-PSR-8Material Type:Silt Till (ML)Plate Type:304.8 mm x 304.8 mmPlate Area (m²)0.09

Load (kN)	Settlement (mm)	Stress (kPa)	Notes
0	0	0.0	Deflection guage slid during seating
2.2	0.26	23.7	
4.4	0.8	47.4	
6.6	2.23	71.0	
8.8	4.83	94.7	
11	7.53	118.4	
13.64	10.951	146.8	Failing

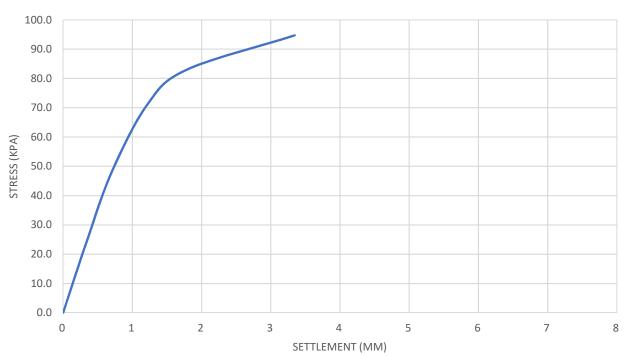

TP-PSR-8

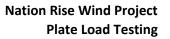
K _{secant} =	50 MPa/m	
M _R =	22 MPa	
CBR _{correlated} =	2.1	


Location:TP-PSR-9Material Type:Silty Sand (SM)Plate Type:304.8 mm x 304.8 mmPlate Area (m²)0.09

Load (kN)	Settlement (mm)	Stress (kPa)	Notes
0	0	0.0	
2.2	0.73	23.7	
4.4	1.5	47.4	
6.6	2.96	71.0	
8.8	7.309	94.7	Creep likely Failing

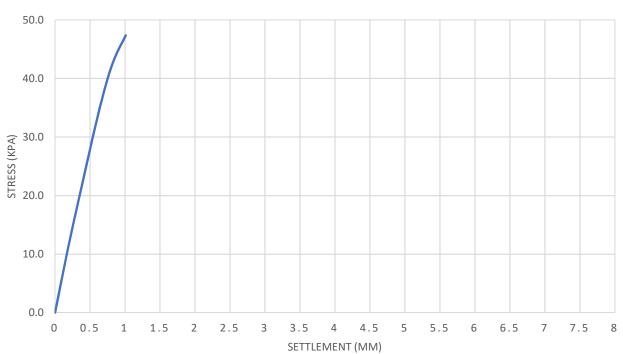
TP-PSR-9

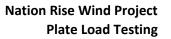

K _{secant} =	34 MPa/m	
M _R =	15 MPa	
CBR _{correlated} =	1.5	


Location:TP-PSR-10Material Type:Silty Sand (SM)Plate Type:304.8 mm x 304.8 mmPlate Area (m²)0.09

Load (kN)	Settlement (mm)	Stress (kPa)	Notes
0.0	0	0.0	
2.3	0.345	24.6	
4.5	0.7	47.9	
6.6	1.215	71.0	
7.7	1.775	82.9	
8.8	3.345	94.7	Creeping

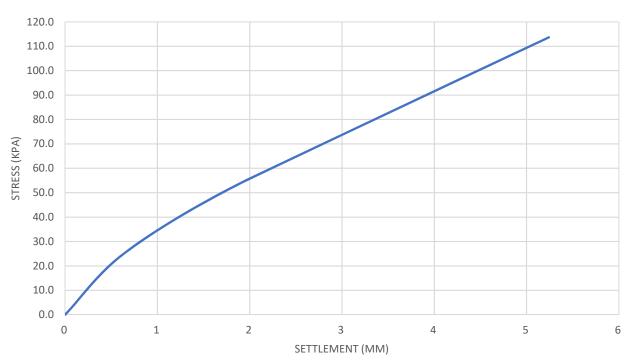
TP-PSR-10


K _{secant} =	63 MPa/m	
M _R =	28 MPa	
CBR _{correlated} =	2.7	


Location:TP-PSR-12Material Type:Silty Sand (SM)Plate Type:304.8 mm x 304.8 mmPlate Area (m²)0.09

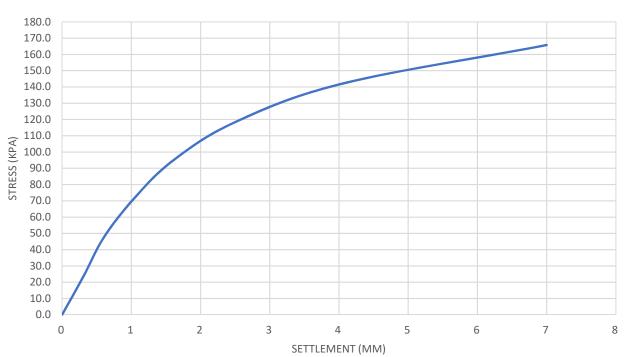
Load (kN)	Settlement (mm)	Stress (kPa)	Notes
0	0	0.0	
1.1	0.2	11.8	
2.2	0.42	23.7	
3.3	0.65	35.5	
3.96	0.824	42.6	
4.4	1.01	47.4	Creep; Likely

TP-PSR-12


K _{secant} =	47 MPa/m	
M _R =	21 MPa	
CBR _{correlated} =	2.0	

Location:TP-PSR-14Material Type:Silty Clay (CL)Plate Type:304.8 mm x 304.8 mmPlate Area (m²)0.09

Load (kN)	Settlement (mm)	Stress (kPa)	Notes
0	0	0.0	
2.2	0.591	23.7	
4.4	1.571	47.4	
6.6	2.851	71.0	
10.56	5.241	113.7	


TP-PSR-14

K _{secant} =	35 MPa/m	
M _R =	16 MPa	
CBR _{correlated} =	1.5	

Location:TP-PSR-16Material Type:Silt Till (ML)Plate Type:304.8 mm x 304.8 mmPlate Area (m²)0.09

Load (kN)	Settlement (mm)	Stress (kPa)	Notes
0	0	0.0	
2.2	0.309	23.7	
4.4	0.6	47.4	
6.6	1.03	71.0	
8.8	1.6	94.7	
11	2.5	118.4	Slight Creep
13.2	4.05	142.1	Slight Creep
15.4	7	165.8	Failing

K _{secant} =	70 MPa/m	
M _R =	31 MPa	
CBR _{correlated} =	3.0	

APPENDIX H

Cement Stabilized Soil Laboratory Test Results and Recommendations Memo

April 2, 2019 18-4022

Ryan McDonner EDP Renewables North America LLC Civil Engineering Manager – Central Region 808 Travis Street, Suite 700, Houston, TX 77002 ryan.mcdonner@edpr.com

Attention: McDonner, Ryan

RE: CEMENT STABILIZED SOIL TESTING, RESULTS AND RECOMMENDATIONS

1 INTRODUCTION AND SCOPE

TULLOCH was retained by EDP Renewables (Client) to complete cement stabilized soil testing for the proposed Nation Rise Wind Project and provide results, analysis and recommendations to support design of the private access site roads to the wind turbines and associated buildings.

A bulk sample was collected at the project site and two compressive strength tests were completed for each of 6 distinct soil-cement mixes. The results were then confirmed by retesting three of the soil-cement mixes in a TULLOCH geotechnical laboratory.

2 FIELD EXPLORATION AND LABORATORY TESTING

A TULLOCH geotechnical engineer mobilized to the project site to collect a representative sample for the cement stabilized soil testing in September 2018. The location of Turbine No. 18 was selected based on its location, soil type and moisture content. A test pit was excavated to a depth of 600 mm using a medium sized backhoe. The bulk soil sample was mixed in the test pit, visually classified and a representative sample was collected in sealed bags to preserve the in-situ moisture content.

The native soil was tested for moisture content, gradation, plasticity, maximum dry density, California Bearing Ratio (CBR) and unconfined compressive strength. Soil-cement mixes at 6%, 8% and 10% by mass cement were prepared at optimal moisture content (OMC) and 8% above the OMC and recompacted into standard PVC cores and sent to the

TULLOCH Geotechnical Laboratory in Sault Ste Marie, ON for unconfined compressive strength testing. A 1-point soaked CBR test for one of the soil-cement mixes is currently in progress and the results will be reported later. Laboratory testing was completed following the ASTM standards listed in Table 1.

Test	Applicable Standard
Particle Size Distribution and Hydrometer	ASTM D6913
Atterberg Limits	ASTM D4318
Moisture Content	ASTM D2216
Soil Density	ASTM D698
Unconfined Compressive Strength	ASTM D2166
California Bearing Ratio (CBR)	ASTM D1883

Table 1: Standards for Laboratory Testing of Soils

3 LABORATORY TEST RESULTS

The bulk sample collected at the Turbine No. 18 location was classified based on visual and tactile assessment on site and tested in the TULLOCH geotechnical lab. Table 2 lists soil description and test results for the native soil.

Table 2: Laboratory Test Results

Test	Results
Visual Classification	Clay, some Silt, (CH)
Natural Moisture Content	44.7%
Gradation	20% Silt, 80% Clay
Atterberg Limits	LL: 69, PL: 29, PI: 40 LI: 0.4
Maximum Dry Density and Optimum Moisture Content	1345 kg/m ³ , 29.8%

Unconfined compression testing was completed for the native and cement stabilized soil samples to assess the strength parameters at varying compositions of water and cement in the mix. The samples were cured for 7 days prior to compression testing. Cylinders for compression testing were prepared at the TULLOCH geotechnical lab and testing was outsourced to a third-party lab. Table 3 summarizes the compressive strength results for the soil-cement mix.

Table 3: Unconfined Compression Test Results

Sample	Load (N)	Average Cross- Sectional Area (mm ²)	Compressive Strength (MPa)
Native Soil	1051	3837	0.274
Native Soil	929	3837	0.242
6% Cement at OMC – 1	7630	8092	0.940
6% Cement at OMC – 2	6688	8124	0.820
6% Cement at OMC + 8% Moisture – 1	5193	8124	0.640*
6% Cement at OMC + 8% Moisture – 2	6886	8124	0.850

8% Cement at OMC – 1	13078	8140	1.61
8% Cement at OMC – 2	13354	8156	1.64
8% Cement at OMC + 8% Moisture – 1	12390	8140	1.52
8% Cement at OMC + 8% Moisture – 2	10332	8140	1.27
10% Cement at OMC – 1	10823	8124	1.33
10% Cement at OMC – 2	8863	8140	1.09
10% Cement at OMC + 8% Moisture – 1	14056	8156	1.72
10% Cement at OMC + 8% Moisture – 2	9402	8124	1.16

*Layer separation at middle of sample noted.

In addition, 6 samples were prepared at the TULLOCH geotechnical lab to confirm test results. Table 4 provides test results for the additional compression tests. On average, the unconfined compressive strength (UCS) for 6%, 8% and 10% cement mix is 0.9, 1.6 and 1.2 MPa at the optimum moisture content. The UCS for 6%, 8% and 10% cement mix is 0.7, 1.4 and 1.4 MPa at 8% above the optimum moisture content. It is noted that there is a high degree of scatter on the data at a cement composition of higher than 8%. This is likely due to the amount of water available to hydrate the cement. The amount and type of clay mineral has an impact on the of water available for cement hydration.

Table 4: Additional Unconfined Co	ompression Test Results
-----------------------------------	-------------------------

Sample	Load (N)	Average Cross- Sectional Area (mm ²)	Compressive Strength (MPa)
8% Cement at OMC – 1	14234	8125	1.75
8% Cement at OMC – 2	12900	8112	1.59
10% Cement at OMC – 1	12455	8121	1.53
10% Cement at OMC – 2	16903	8096	2.09
10% Cement at OMC + 8% Moisture – 1	9786	8098	1.21
10% Cement at OMC + 8% Moisture – 2	8452	8112	1.04

3-point soaked and un-soaked CBR testing was completed for the native soil to provide input for road design at a variable moisture content of the subgrade.

Sample	Condition	Moisture Content (%)	CBR at 5 mm
Sample 1	UnSoaked	25	15.34
Sample 1	Soaked	41	2.18
Sample 1	UnSoaked	37	4.28
Sample 1	Soaked	30	10.61
Sample 1	UnSoaked	34	4.03
Sample 1	Soaked	39	3.45
8% Cement	Soaked	21	127.38
Mix at OMC			

Table 5 highlights the impact of moisture content on the strength of subgrade. The data shows approximately a reduction of 0.75% in CBR per increase of 1% in moisture content.

It is advised to have a moisture content within 5% of the optimum to ensure the specified compaction can be achieved.

In addition to the laboratory testing, plate load testing was completed at 10 of the turbines to provide supplementary data for road design. Table 6 provides the plate load test results. The CBR values were correlated based on the following relationship.

$$M_{R} = 10.3 \text{ x CBR}$$

Test Pit	WTG Access Rd	Material	Subgrade Modulus (MN/m3)	Correlated Resilient Modulus M _R (MPa)	Correlated CBR
TP-PSR-4	WTG-16	Silt Till (ML)	54	24	2.3
TP-PSR-5	WTG-27	Silt Till (ML)	65	29	2.8
TP-PSR-6	WTG-38	Silty Clay (CL)	58	26	2.5
TP-PSR-7	WTG-44	Silt Till (ML)	20	9	0.9
TP-PSR-8	WTG-48	Silt Till (ML)	50	22	2.1
TP-PSR-9	WTG-52	Silty Sand (SM)	34	15	1.5
TP-PSR-10	WTG-56	Silty Sand (SM)	63	28	2.7
TP-PSR-12	WTG-57	Silty Sand (SM)	47	21	2
TP-PSR-14	WTG-35	Silty Clay (CL)	35	16	1.5
TP-PSR-16	WTG-25	Silt Till (ML)	70	31	3.0

Table 6: Correlated CBR based on Plate Load Testing

The correlated California Bearing Ratio (CBR) for the private site roads ranges from 0.9 to 3. This indicates poor subgrade soil. The lower CBR value is likely due to a high composition of clay sized particles in the upper soil layer. The subgrade strength of clayey soils is highly dependent on the moisture content as highlighted in Table 5. The strength will change due to seasonal variations. The subgrade strength will be highest during the dry seasons and when the ground is frozen. The lowest strength will be encountered during the spring thaw or following a rain fall.

4 TRAFFIC LOADING

American Association of State Highway and Transportation Officials (AASHTO) utilizes Equivalent Single Axle Load (ESAL) to standardize traffic loading for the purpose of road design. ESAL converts vehicles to an equivalent single axle load of 80 kN(18 kips). Construction vehicles were divided into Single Unit Trucks and Tractor Trailer combinations. Table 7 summarizes the estimated ESALs for each vehicle type.

Table 7: ESALs for each vechile

Vehicle Type	ESAL
Single Unit Truck	0.881
Tractor Trailer Combination	2.073

The turbine delivery vehicles were estimated based on the quantity of material required to construct each turbine. Table 8 provides the assumed number of delivery vehicles (tractor trailer combination) and single unit vehicles for each turbine.

Table 8: Estimated number of delivery vehicles per turbine

Vehicle Type	No. of ESALs
Turbine Delivery Vehicles	12
Concrete Trucks	80
Crane Trucks	17
Gravel Trucks for Site	280
Gravel Trucks for Roads	Varies per road length
Stabilization Trucks for Roads	Varies per road length
Single Unit Trucks	100

A factor of safety of 2 is used to account for uncertainties relating to the preliminary nature of traffic loading estimate. The safety factor may be adjusted once more accurate information is available. Some access roads may be used to access multiple turbines, increasing the traffic loading accordingly. Table 9 provides the estimated traffic loading for the access roads.

Table 9: Calculated ESALs for each Access Road

Access Road	ESALs
1 – 2	4,290
4	2,180
5	2,140
6	2,190
7	2,130
9	2,070
10 – 11	4,130
12	2,050
16	2,050
18 – 20 – 21	15,340
23	2,140
25	8,400
27	1,980
28	2,200
29	2,150
58	2,060
32	2,080
35	1,930
38	2,090
41	2,020
43	2,140

Access Road	ESALs
54	2,200
44	2,110
47	2,110
48	2,250
52	7,840
46	2,340
56	2,470
57	2,190
Laydown	81,760

5 DESIGN AND GEOTECHNICAL RECOMMENDATIONS

This section provides recommendations for design of the private access roads for the Nation Rise Project Site. There are two applicable methods described in the AASHTO pavement design manual. The first method is the Design of flexible and rigid pavements based on the concept of the required Structural Number. The required Structural Number is a function of the traffic loading, subgrade resilient modulus, serviceability loss measuring the riding quality provided by the pavement, reliability intended to account for variations in traffic prediction and performance prediction and overall standard deviation. Table 10 provides the parameters used for the cement stabilized soil access road design recommendations. The parameters are based on recommendations and correlations provided in AASHTO guide for pavement design (1993).

Table 10:	Design	Parameters	for the	road design
-----------	--------	-------------------	---------	-------------

Design Parameter	Estimate	
Reliability	75%	
Standard Deviation	0.45	
Traffic Loading (ESALs)	Varies	
Subgrade Resilient Modulus	20 MPa	
Design Serviceability Loss	1.7	
Gravel - Layer Coefficient	0.12	
Cement Stabilized Soil – Layer Coefficient	0.14	
Rut Depth	38.1mm (1.5 inches)	

The second method prescribed in AASHTO guide is for the design of Low Volume Aggregate roads. This method utilizes traffic loading, elastic modulus of the base gravel, allowable rutting and subgrade resilient modulus.

5.1 CEMENT STABILIZED AND GEOGRID REINFORCED ACCESS ROAD

Based on the laboratory test results and plate load test data summarized in Section 3, the WTG access roads can be designed using a resilient modulus, M_R , of 20 MPa for the subgrade soils. Table 11 provides recommended road structure for the WTG access roads. The road thicken ss is recommended based on the American Association of Highway and Transportation Officials (AASHTO) Guide for Design of Pavement Structures (1993). The road thickness for the ESALs provided in Table 8 is not sensitive to a CBR of the subgrade, for CBR values higher than 2%. The road design is based on a subgrade CBR value of 2%, therefore the design in Table 11 should be utilized for all access roads.

Material	Option 1 (mm)	Option 2 (mm)
Gravel – Granular A	150	150
Gravel – Granular B Type II	-	300
Cement Stabilized Soil	300	-
Geotextile and Geogrid	-	TBX2000 or equivalent

 Table 11: Proposed Road design for Private Access Roads

5.2 DRAINAGE

The recommended road design in section 5.1 is based on good drainage and assumes a drainage coefficient of 1. Natural drainage in the area is poor. After a rainfall event, water can remain ponded for an extended period. The water may stay and saturate the subgrade material and soften the road subgrade. The contractor is required to crown the subgrade properly directing the water to the road side ditches. In the absence of ditches, the water should be collected using subdrains along the edge of the road, out-letting into a natural low point away from the road. It is assumed the construction will be carried out during dry conditions. If the construction is carried out in wet conditions, the contractor must consult a geotechnical engineer to provide recommendations on the use of geotextile and geogrid.

5.3 MAINTENANCE

The road design recommendations assume a rut depth of 1.5 inches. This will require periodic grading and resurfacing of the roads to account for gravel loss due to traffic, precipitation and snow removal operations. During wet conditions the contractor will encounter wet areas and pumping of finer subgrade into the granular fill. This will result in loss of stiffness and weakening of the road structure. The contractor should overlay a layer of geotextile to prevent migration of fines where pumping of fines is observed in the road base. In addition, geogrid reinforcement will be required to stiffen up the road structure.

If potholes are observed, the loose gravel should be removed and the area should be excavated to a depth of 200 mm and a patch of 1m x 1m, and replaced with Granular A (OPSS 1010).

5.4 SPECIFICATIONS

The following specifications must be met for the access road construction.

- Subgrade soil designated as undesirable by the consultant shall be excavated, removed and disposed of at a time and place as directed by the consultant. The excavated areas shall be immediately backfilled with approved material as designated by the consultant.
- Subgrade shall be scarified to a depth of 150 mm. The loosened material shall be windrowed to the side, and the exposed surface shall be thoroughly compacted. The windrowed material shall then be uniformly mixed, shaped to conform to the dimensions, lines, grades and cross-section as established by the designer, and compacted to obtain compaction of 95% of the Standard Proctor Maximum Dry Density (SPMDD) in the upper 150 mm of the subgrade. Conduct a standard proctor test every 200m of the road to adjust the standard proctor maximum dry density for each section.
- When moisture content of the subgrade is lower than the optimum , the material shall be watered and thoroughly mixed until optimum moisture content is attained. When the material is higher than the optimum, the material shall be worked and aerated until optimum moisture content is attained. Should excess moisture from continuous or heavy precipitation threaten to unduly delay the completion of the Contract, apply in writing to the Consultant requesting permission to use Lime or Portland Cement to dry out the clay subgrade or sub-base material at specific locations.
- The finished subgrade shall be firm and uniform, true to grade and cross section, and shall be approved by the consultant before placing subsequent material thereon.
- Where removal for higher than 150 mm of the subgrade is required, the subgrade shall be recompacted in layers not exceeding a depth of 150 mm or three times the maximum aggregate size, whichever is less.

- Where geotextiles are used, place gravel by end dumping methods and level with a front end loader to avoid damage to the geotextile fabric.
- Compact base gravel to 100 % of the SPMDD and compact in layers not exceeding 75mm in depth. Conduct compaction testing testing on the base gravel for every 100 m of gravel placed on the road.
- Spread the base gravel uniformly to avoid segregation i.e. pockets of fine and course material.
- There should no construction traffic on exposed subgrade. If the subgrade ruts excessively, the subgrade should be scarified, moisture conditioned and recompacted prior to placement of base and/or sub-base.
- The contractor is responsible for maintaining drainage throughout the project. Roadside ditches shall be graded as necessary to maintain drainage. Grading work performed in the ditches should be seeded and protected with erosion mat immediately after grading is complete.
- For at grade access roads, the subgrade and base material should be crowned appropriately to divert water away from the road. Subdrains wrapped in geotextile running along the road edges out letting to a low point should be utilized if the road base cannot be drained properly.
- All aggregates used for bases or surface treatments on access roads shall be a 100% crushed stone (quarried bedrock).
- Pit or band run aggregates may only be used for earthen fill or Portland cement concrete mixes. The contractor shall submit, for approval, an aggregate gradation that meet the requirements stipulated in the TULLOCH memo entitled, "Nation Rise Public Road Recommendation Memo" dated April XX, 2019.
- The gradation requirements of Granular A and Granular B material should meet the Ontario Provincial Standard Specification (OPSS) 1010.
- The contractor or aggregate supplier should perform at least one gradation test per day. Testing can be exempt for any day when placement is less than 100 tons. Testing shall be performed per ASTM D6913. Testing should be performed by a Canadian Council of Independent Laboratories (CCIL) certified Lab and CCIL certified technician and the results made available to the owner within 24 hours of sample collection.

- All proof rolls shall be performed by a minimum 33 Ton tandem axle truck and witnessed by a representative from a geotechnical consulting firm approved by the owner. The observed deflection shall be less than 13 mm. The contractor may use geotextiles, geogrid reinforcement, additional gravel, additional compaction effort, or additional cement to remedy failed tests. The geotechnical engineer should be contacted for approval if other means of repair are used.
- Prior to exposing the roads to heavy traffic, the contractor should allow access roads to dry up following a freeze thaw and wet weather. Properly prepared subgrade may not perform well if the subgrade is saturated. It is recommended to perform another round of proof rolling if the subgrade is expected to be saturated.
- Prior to Commencing access road construction, the contractor shall collect subgrade samples for each turbine access road and deliver for compression testing (ASTM D2166) at 8% cement by mass, optimum moisture content and 95% compaction (per ASTM D558) of the SPMDD. The sample should be tested 7 days after mixing for unconfined compressive strength. The unconfined compression strength should be a minimum of 1.7 MPa, if the tests do not meet the minimum strength, the percent cement or other factors may be re-evaluated.
- All access roads should receive an 8% cement mix to a depth of 300 mm. The cement mix may be adjusted with prior approval by the owner.
- Determine moisture prior to mixing cement in the soil and adjust to +/- 2% of the optimum determined per compaction test results (ASTM D558).
- Compaction should begin within one hour of cement mixing. Density and moisture should be determined within two hours of the cement mixing. The testing should be completed every 100 m of the road.
- Cement stabilization shall not be performed on frozen subgrade

Enclosed: Lab Test Results

CSA A283 Certified Laboratory for Concrete Testing CCIL Certified Laboratory for Aggregates and Asphalt Testing **CSA/CCIL** Certified Technicians

WATER CONTENT TEST

TEST METHOD: LS 701 / ASTM C 566 / D 2216

CONTRACT NO: 18-4022 DATE SAMPLED: Refer to BH logs

TESTED BY:

T. Linley

Boreholes PROJECT: Nation Rise Cement Stabilization SOURCE:

DATE TESTED: 10-Oct-18

		Gross (inc. Tare) (g)					
Tare ID	Sample ID	Depth (m)	Wet Weight	Dry Weight	TARE	Mass Lost	Water %
	TP18 SA13		677.42	518.50	162.73	158.92	44.7%

REMARKS:

CLIENT:

COPIES TO:

GRAIN SIZE DISTRIBUTION TEST DATA

2018-10-15

Project: Nation Rise Wind Farm

Project Number: 18-4022

Location: TP 18

Sample Number: 13

Liquid Limit: 69

USCS Classification: CH

AASHTO Classification: A-7-6(48)

Plastic Limit: 29

Sieve Test Data

			0.01			
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer	
518.50	162.73	#10	0.00	0.00	100.0	
		#16	0.00	0.00	100.0	
		#30	0.10	0.00	100.0	
		#40	0.10	0.00	99.9	
		#50	0.20	0.00	99.9	
		#60	0.20	0.00	99.8	
		#100	0.40	0.00	99.7	
		#200	0.70	0.00	99.5	
			Hydrom	otor Toot D	ata	

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100.0

Weight of hydrometer sample =74.6

Automatic temperature correction

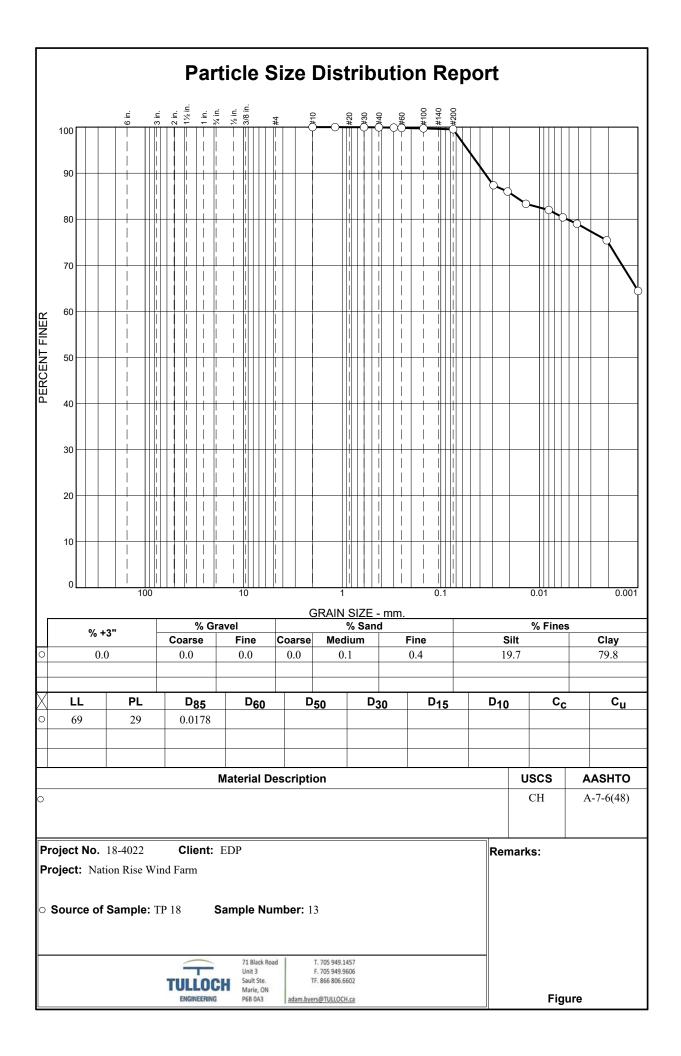
Composite correction (fluid density and meniscus height) at 20 deg. C = -5

Meniscus correction only = -1.0 Specific gravity of solids = 2.65

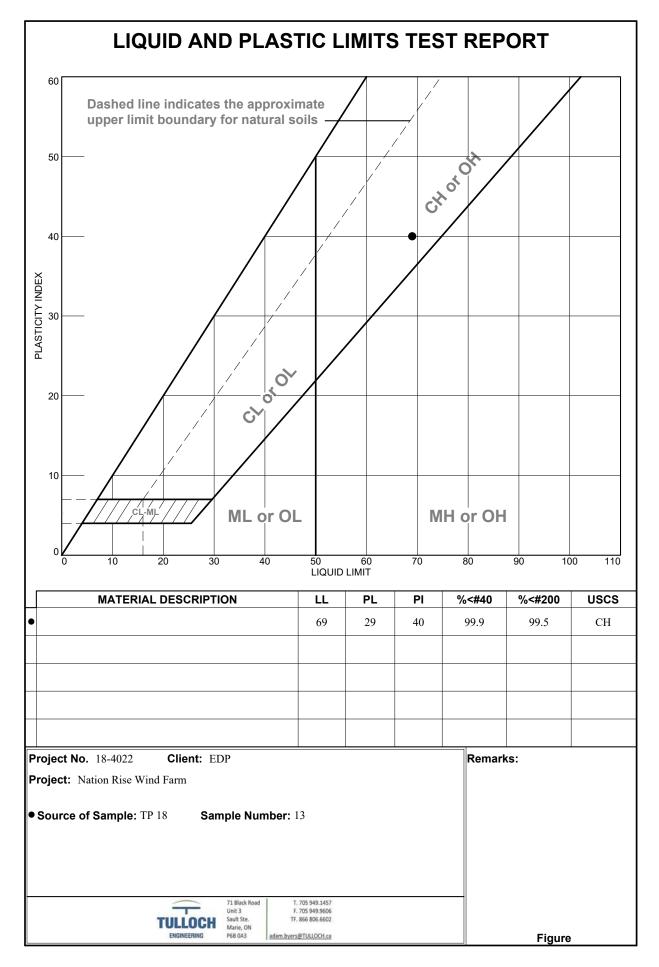
Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

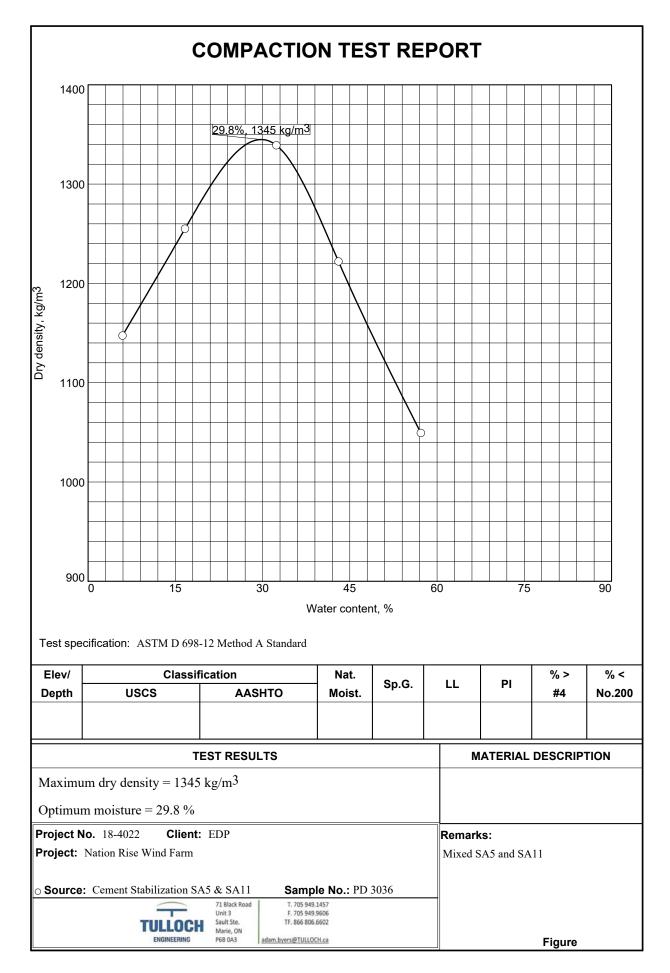
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	24.7	69.0	65.2	0.0129	68.0	5.1	0.0292	87.4
2.00	24.7	68.0	64.2	0.0129	67.0	5.3	0.0210	86.0
5.00	24.7	66.0	62.2	0.0129	65.0	5.6	0.0137	83.3
15.00	24.7	65.0	61.2	0.0129	64.0	5.8	0.0080	82.0
30.00	24.1	64.0	60.0	0.0130	63.0	6.0	0.0058	80.4
60.00	24.0	63.0	59.0	0.0130	62.0	6.1	0.0042	79.0
250.00	26.3	59.5	56.3	0.0127	58.5	6.7	0.0021	75.4
1440.00	20.5	53.0	48.1	0.0136	52.0	7.8	0.0010	64.4


Fractional Components

Cabbles		Gravel		Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.5	19.7	79.8	99.5


D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅	
								0.0053	0.0178	0.0359	0.0528	

Fineness Modulus


0.00

		LIQUID	AND PLASTIC	CLIMIT TEST DAT	A	2018-10-15
Client: EDP						
Project: Natio	on Rise Wind	Farm				
	ber: 18-4022					
-ocation: TP						
Sample Num	ber: 13					
% <#40: 99.9		%<#200: 99.5		ISCS: CH	AASHTO:	A-7-6(48)
Fested by: S.	Hoffman		C	hecked by: J.Draper		
			Liquid Lir	nit Data		
Run No.	1	2	3	4	5	6
Wet+Tare	26.17	25.79	25.67			
Dry+Tare	21.15	20.80	20.67			
Tare # Blows	13.79	13.64	13.63			
# Blows 31 Moisture 68.2		23 69.7	12			
71.8 71.4 71 70.6 70.2 69.8 69.4 69 68.6 68.2 67.8 5 6		3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 30 40 Plastic Lin	nit Data	Plastic Plasticity Natural Moi	
Run No.	1	2	3	4		
Wet+Tare	17.46	16.32				
Dry+Tare	16.59	15.75				
Tare Moisture	13.60	13.74				
woisture	29.1	28.4				
			Natural Mois	sture Data		
Wet+Ta	ire Di	y+Tare	Tare	Moisture		
677.42	2	518.5	162.73	44.7		
677.42	2	518.5	162.73	44.7		

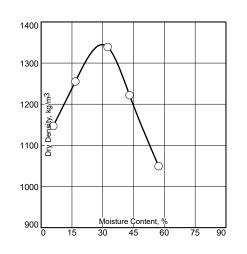
Checked By: J.Draper

_ Checked By: T. Linley

MOISTURE DENSITY TEST DATA

Client: EDP

Project: Nation Rise Wind Farm
Project Number: 18-4022
Location: Cement Stabilization SA5 & SA11
Sample Number: PD 3036
Testing Remarks: Mixed SA5 and SA11
Tested by: D.Stadnisky


Checked by: T. Linley

Test Data and Results

Test Specification:

Type of Test: ASTM D 698-12 Method A Standard

Mold Dia: 4.00 Hammer Wt.: 5.5 lb. Drop: 12 in. Layers: three Blows per Layer: 25

Point No.	1	2	3	4	5
Wt. M+S	5647.0	5882.0	6173.0	6150.0	6057.0
Wt. M	4500.0	4500.0	4500.0	4500.0	4500.0
Wt. W+T	295.4	275.1	292.4	298.6	372.2
Wt. D+T	287.6	260.1	260.9	254.0	296.0
Tare	155.7	170.1	163.6	150.4	162.8
Moist.	5.9	16.7	32.4	43.1	57.2
Dry Den.	1147	1255	1339	1222	1049

Test Results:

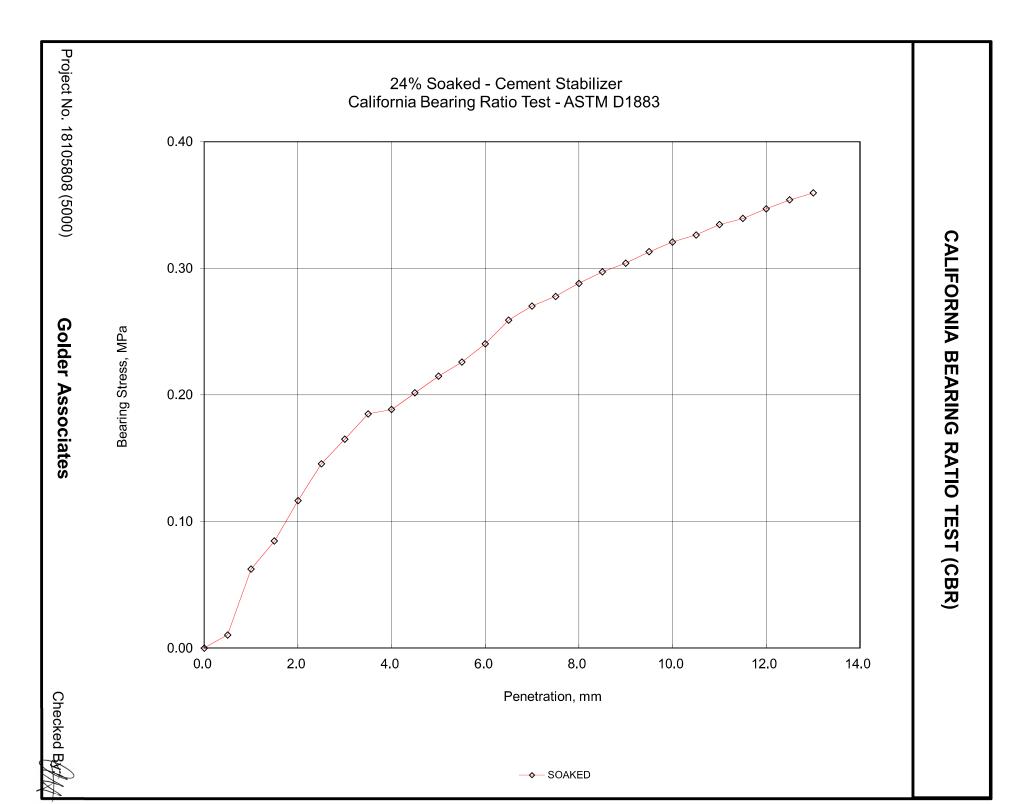
Max. Dry Den.= 1345 kg/m^3 Opt. Moist.= 29.8%

SUMMARY OF COMPRESSIVE STRENGTH RESULTS

CLIENT	TULLOCH Engineering Inc.
PROJECT	Lab Testing of Aggregates
LOCATION	Sault St. Marie, Ontario
SPECIMEN TYPE	100 mm dia. Cylinders (soil/cement)

PML REF.18HM133REPORT NO.1ENCLOSURE1DATE RECEIVEDNovember 28, 2018

SAMPLE REFERENCE	LAB NUMBER	LOAD	AREA	DATE CAST		/E STRENGTH /Pa)	Comments
KEFEKENCE	NUNDER	(N)	(MM2)		7 days	28 days	
40,4000		7630.2	8092		0.94		Soil at 30% moisture
18-4022 Mix 1	1851864 A&B	6687.5	8124	November 21, 2018	0.82		Cement 6%
AVERAGE				1	0.88		
40,4000		5193.6	8124		0.64*		OMC +8%
18-4022 Mix 2	1851864 C&D	6886.1	8124	November 21, 2018	0.85		Cement 6%
	CaD			2010			*Layer separation at middle of sample noted
AVERAGE					0.75		
10,1000		13078.3	8140	November 22, 2018	1.61		OMC
18-4022 Mix 3	1851864 E&F	13353.6	8156		1.64		Cement 8%
	201			2010			
AVERAGE				1	1.63		
40,4000		12390.2	8140		1.52		OMC +8%
18-4022 Mix 4	1851864 G&H	10332.8	8140	November 22, 2018	1.27		Cement 8%
	Curr			2010			
AVERAGE	1			1	1.40		
19 4000		10822.6	8124		1.33		OMC Cement 10%
18-4022 Mix 5	1851864 I&J	8863.1	8140	November 22, 2018	1.09		
	10.0			2010			
AVERAGE	ı		1	1	1.21		
40,4000		14055.9	8156		1.72		OMC +8%
18-4022 Mix 6	1851864 K&L	9402.0	8124	November 22, 2018	1.16		Cement 10%
	TOL			2010			
AVERAGE	L			1	1.44		


NOTE:

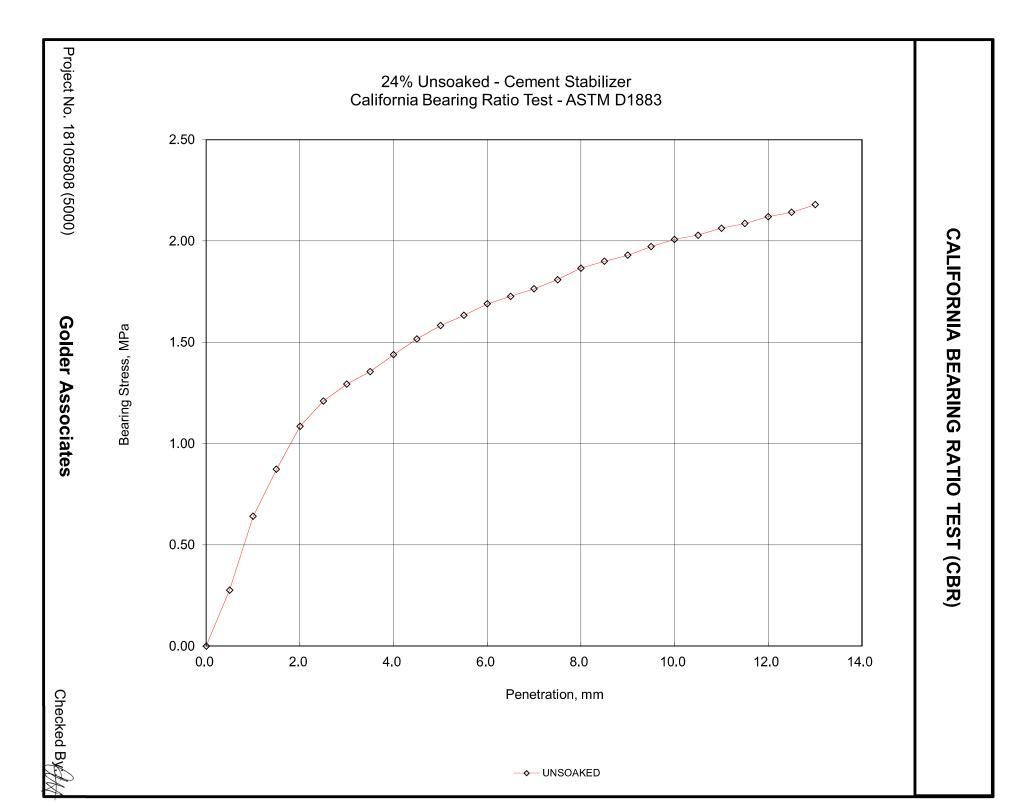
Sample Type: Nominal 100mm diameter cylinder.

d - Cement Stabilize	24% Soaked	SAMPLE NUMBER	18105808 (5000)		PROJECT NUMBER
		SAMPLE DEPTH (m)	Tulloch Nation Rise	-	PROJECT NAME
03/04/201		DATE	-		BOREHOLE NUMBER
		RMATION	TEST INFO		
< 1		PARTICLE SIZE, mm	1.27		STRAIN RATE, mm/min
STM D698 Method	AST	COMPACTION	19.44		RAM AREA, cm ²
3		NUMBER OF LAYERS	178671		LOAD CELL NUMBER
45		BLOWS PER LAYER	4.54		SURCHARGE, kg
94		RELATIVE COMPACTION, %	96		SOAKING TIME, hr
		ORMATION	SAMPLE INF		
SOAKED	UNSOAKED		SOAKED	UNSOAKED	
2776.07	2776.07	DRY WEIGHT, g	11.66	11.66	SAMPLE HEIGHT, cm
40.75	25.20	WATER CONTENT, %	15.23	15.23	SAMPLE DIAMETER, cn
18.03	16.04	UNIT WEIGHT, kN/m ³	182.18	182.18	SAMPLE AREA, cm ²
12.81	12.81	DRY UNIT WT., kN/m ³	2124.90	2123.62	SAMPLE VOLUME, cc
			3907.24	3475.64	WET WEIGHT, g
		ATION	PENETR		
	DAKED	S		JNSOAKED	U
Bearing Stress	Load	Penetration	Bearing Stress	Load	Penetration
(MPa)	(kgf)	(mm)	(MPa)	(kgf)	(mm)
0.00	0.00	0.0	0.00	-	0.0
0.01	2.06	0.5	0.00	-	0.5
0.06	12.36	1.0	0.00	-	1.0
0.08	16.75	1.5	0.00	-	1.5
0.12	23.07	2.0	0.00	-	2.0
0.15	28.83	2.5	0.00	-	2.5
0.16	32.68	3.0	0.00	-	3.0
0.18	36.66	3.5	0.00	-	3.5
0.19	37.35	4.0	0.00	-	4.0
0.20	39.95	4.5	0.00	-	4.5
0.21	42.56	5.0	0.00	-	5.0
0.23	44.76	5.5	0.00	-	5.5
0.24	47.64	6.0	0.00	-	6.0
0.26	51.35	6.5	0.00	-	6.5
0.27	53.55	7.0	0.00	-	7.0
0.28	55.06	7.5	0.00	-	7.5
0.29	57.12	8.0	0.00	-	8.0
0.30	58.90	8.5	0.00	-	8.5
0.30	60.27	9.0	0.00	-	9.0
0.31	62.06	9.5	0.00	-	9.5
0.32	63.57	10.0	0.00	-	10.0
0.33	64.67	10.5	0.00	-	10.5
0.33	66.31	11.0	0.00	-	11.0
0.34	67.27	11.5	0.00	-	11.5
0.35	68.79	12.0	0.00	-	12.0
0.35	70.16	12.5	0.00	-	12.5
0.36	71.26	13.0	0.00	_	13.0

UNSOAKED	SOAKED
WATER CONTENT AT PENETRATION POINT, %	41.50
SWELL, %	0.06
CORRECTED STRESS VALUE (at 2.5 mm), MPa -	0.16
CORRECTED STRESS VALUE (at 5.0 mm), MPa -	0.23
BEARING RATIO (at 2.5 mm), %	2.32
BEARING RATIO (at 5.0 mm), %	2.18

PROJECT NUMBER		18105808 (5000)	SAMPLE NUMBER	24% Unsoaked -	Cement Stabilizer
PROJECT NAME		Tulloch Nation Rise	SAMPLE DEPTH (m)		-
BOREHOLE NUMBER		-	DATE		03/05/2019
		TEST INF	ORMATION		
STRAIN RATE, mm/min		1.27	PARTICLE SIZE, mm		< 19
RAM AREA, cm ²		19.44	COMPACTION	ASTN	1 D698 Method C
LOAD CELL NUMBER		178671	NUMBER OF LAYERS		3
SURCHARGE, kg		4.54	BLOWS PER LAYER		45
SOAKING TIME, hr		N/A	RELATIVE COMPACTION, 9	%	92
		SAMPLE I	IFORMATION		
	UNSOAKED	SOAKED		UNSOAKED	SOAKED
SAMPLE HEIGHT, cm	11.66	-	DRY WEIGHT, g	2791.48	-
SAMPLE DIAMETER, cn	15.24	-	WATER CONTENT, %	23.90	-
SAMPLE AREA, cm ²	182.42	-	UNIT WEIGHT, kN/m ³	15.94	-
SAMPLE VOLUME, cc	2126.41	-	DRY UNIT WT., kN/m ³	12.87	-
WET WEIGHT, g	3458.64	-			

PENETRATION


	UNSOAKED			SOAKED	
Penetration	Load	Bearing Stress	Penetration	Load	Bearing Stress
(mm)	(kgf)	(MPa)	(mm)	(kgf)	(MPa)
0.0	0.00	0.00	0.0	-	0.00
0.5	54.78	0.28	0.5	-	0.00
1.0	126.99	0.64	1.0	-	0.00
1.5	172.99	0.87	1.5	-	0.00
2.0	215.00	1.08	2.0	-	0.00
2.5	239.71	1.21	2.5	-	0.00
3.0	256.32	1.29	3.0	-	0.00
3.5	268.67	1.36	3.5	-	0.00
4.0	285.15	1.44	4.0	-	0.00
4.5	300.66	1.52	4.5	-	0.00
5.0	313.57	1.58	5.0	-	0.00
5.5	323.59	1.63	5.5	-	0.00
6.0	334.85	1.69	6.0	-	0.00
6.5	342.26	1.73	6.5	-	0.00
7.0	349.67	1.76	7.0	-	0.00
7.5	358.60	1.81	7.5	-	0.00
8.0	369.85	1.87	8.0	-	0.00
8.5	376.58	1.90	8.5	-	0.00
9.0	382.48	1.93	9.0	-	0.00
9.5	391.00	1.97	9.5	-	0.00
10.0	398.00	2.01	10.0	-	0.00
10.5	401.98	2.03	10.5	-	0.00
11.0	408.98	2.06	11.0	-	0.00
11.5	413.51	2.09	11.5	-	0.00
12.0	420.24	2.12	12.0	-	0.00
12.5	424.49	2.14	12.5	-	0.00
13.0	431.91	2.18	13.0	-	0.00

TEST RESULTS

BEARING RATIO (at 5.0 mm), %
BEARING RATIO (at 2.5 mm), %
CORRECTED STRESS VALUE (at 5.0 mm), MPa
CORRECTED STRESS VALUE (at 2.5 mm), MPa
SWELL, %
WATER CONTENT AT PENETRATION POINT, %

UNSOAKED	SOAKED
23.20	-
N/A	-
1.21	-
1.58	-
17.54	-
15.34	-

Checked By:

	CALIFORNIA	A BEARING RATI	O TEST (CBR) ASTM	D1883	
PROJECT NUMBER		18105808 (5000)	SAMPLE NUMBER	29.8% Soaked	I - Cement Stabilizer
PROJECT NAME		Tulloch Nation Rise	SAMPLE DEPTH (m)		-
BOREHOLE NUMBER		-	DATE		03/04/2019
		TEST INFO	ORMATION		
STRAIN RATE, mm/min		1.27	PARTICLE SIZE, mm		< 19
RAM AREA, cm ²		19.44	COMPACTION	AS	TM D698 Method C
LOAD CELL NUMBER		178671	NUMBER OF LAYERS		3
SURCHARGE, kg		4.54	BLOWS PER LAYER		45
SOAKING TIME, hr		96	RELATIVE COMPACTION,	%	96
		SAMPLE IN	FORMATION		
	UNSOAKED	SOAKED		UNSOAKED	SOAKED
SAMPLE HEIGHT, cm	11.65	11.65	DRY WEIGHT, g	2869.88	2869.88
SAMPLE DIAMETER, cn	15.24	15.24	WATER CONTENT, %	29.60	36.60
SAMPLE AREA, cm ²	182.42	182.42	UNIT WEIGHT, kN/m ³	17.16	18.08
SAMPLE VOLUME, cc	2124.59	2125.13	DRY UNIT WT., kN/m ³	13.24	13.24
WET WEIGHT, g	3719.36	3920.36			
		PENET	RATION		
L	JNSOAKED			SOAKED	
Penetration	Load	Bearing Stress	Penetration	Load	Bearing Stress
(mm)	(kgf)	(MPa)	(mm)	(kgf)	(MPa)
0.0	-	0.00	0.0	0.00	0.00
0.5	-	0.00	0.5	21.42	0.11
1.0	-	0.00	1.0	43.25	0.22
1.5	-	0.00	1.5	55.06	0.28
2.0	-	0.00	2.0	65.22	0.33
2.5	-	0.00	2.5	73.45	0.37
3.0	-	0.00	3.0	76.88	0.39
3.5	-	0.00	3.5	79.49	0.40
4.0	-	0.00	4.0	82.65	0.42
4.5	-	0.00	4.5	85.53	0.43
5.0	-	0.00	5.0	87.46	0.44
5.5	-	0.00	5.5	89.65	0.45
6.0	-	0.00	6.0	91.85	0.46
6.5	-	0.00	6.5	93.63	0.47
7.0	-	0.00	7.0	95.14	0.48
7.5	-	0.00	7.5	96.52	0.49
8.0	-	0.00	8.0	98.30	0.50
8.5	-	0.00	8.5	99.67	0.50
9.0	-	0.00	9.0	100.64	0.51
9.5	-	0.00	9.5	102.15	0.52
10.0	-	0.00	10.0	103.11	0.52
10.5	-	0.00	10.5	104.75	0.53
11.0	-	0.00	11.0	106.26	0.54
11.5	_	0.00	11.5	107.50	0.54
10.0			100		

TEST RESULTS

12.0

12.5

13.0

108.87

110.11

111.07

0.55

0.56

0.56

0.00

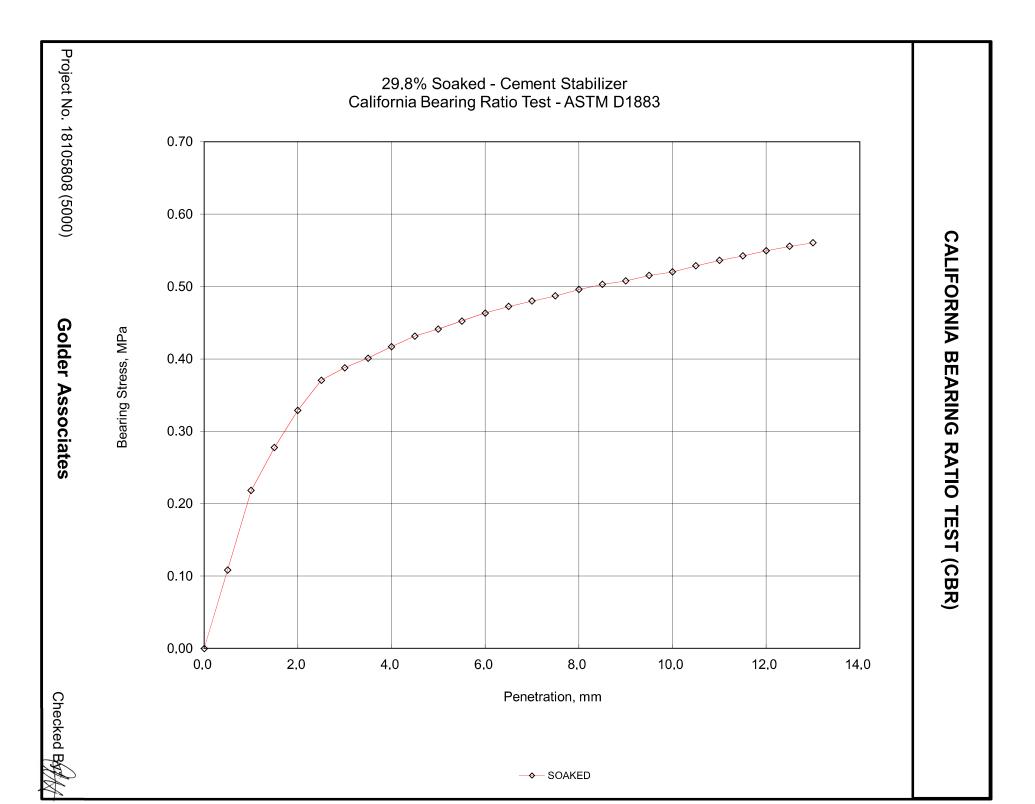
0.00

0.00

-

-

-


	UNSOAKED	SOAKED
WATER CONTENT AT PENETRATION POINT, %	-	34.80
SWELL, %	-	0.03
CORRECTED STRESS VALUE (at 2.5 mm), MPa	-	0.37
CORRECTED STRESS VALUE (at 5.0 mm), MPa	-	0.44
BEARING RATIO (at 2.5 mm), %	-	5.37
BEARING RATIO (at 5.0 mm), %	-	4.28

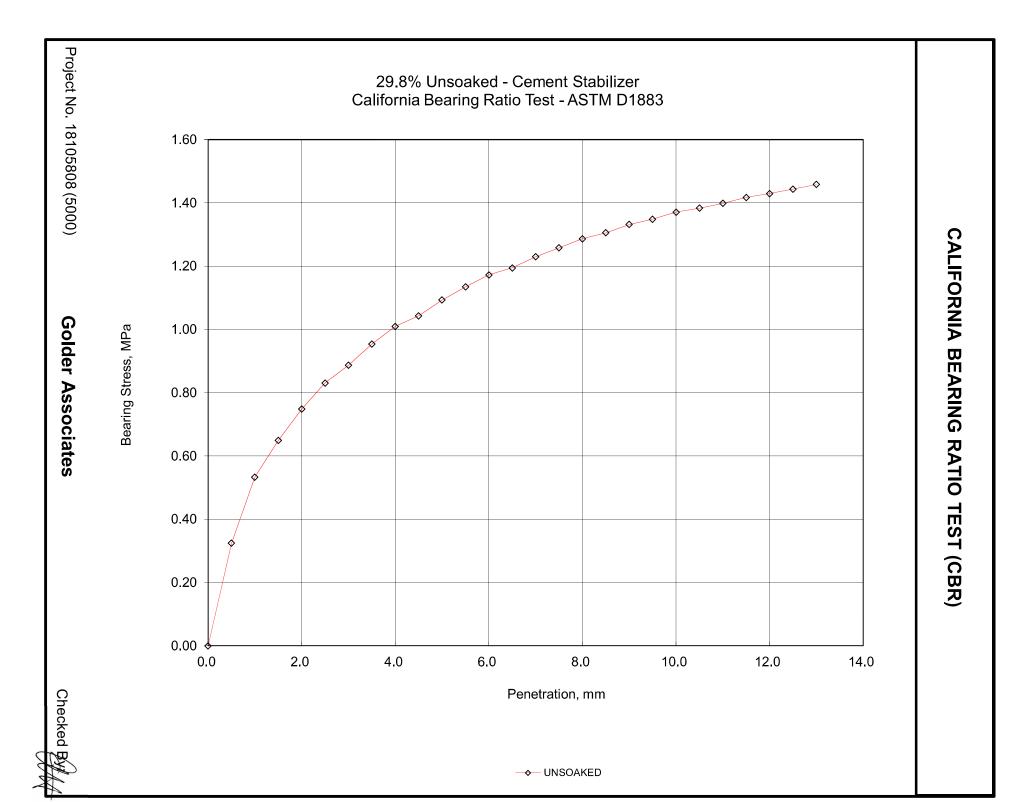
Checked By:

12.0

12.5

13.0

PROJECT NUMBER		18105808 (5000)	SAMPLE NUMBER	29.8% Unsoaked - C	Cement Stabilizer
PROJECT NAME		Tulloch Nation Rise	SAMPLE DEPTH (m)		-
BOREHOLE NUMBER		-	DATE		03/05/2019
		TEST INF	ORMATION		
STRAIN RATE, mm/min		1.27	PARTICLE SIZE, mm		< 19
RAM AREA, cm ²		19.44	COMPACTION	ASTM	D698 Method C
LOAD CELL NUMBER		178671	NUMBER OF LAYERS		3
SURCHARGE, kg		4.54	BLOWS PER LAYER		45
SOAKING TIME, hr		N/A	RELATIVE COMPACTION	, %	93
		SAMPLE IN	IFORMATION		
	UNSOAKED	SOAKED		UNSOAKED	SOAKED
SAMPLE HEIGHT, cm	11.65	-	DRY WEIGHT, g	2842.24	-
SAMPLE DIAMETER, cn	15.24	-	WATER CONTENT, %	30.10	-
SAMPLE AREA, cm ²	182.42	-	UNIT WEIGHT, kN/m ³	17.06	-
SAMPLE VOLUME, cc	2125.14	-	DRY UNIT WT., kN/m ³	13.11	-
WET WEIGHT, g	3697.76	-			
		PENET	RATION		
L	JNSOAKED			SOAKED	


	UNSOAKED			SOAKED			
Penetration	Load	Bearing Stress	Penetration	Load	Bearing Stress		
(mm)	(kgf)	(MPa)	(mm)	(kgf)	(MPa)		
0.0	0.00	0.00	0.0	-	0.00		
0.5	64.25	0.32	0.5	-	0.00		
1.0	105.72	0.53	1.0	-	0.00		
1.5	128.64	0.65	1.5	-	0.00		
2.0	148.27	0.75	2.0	-	0.00		
2.5	164.61	0.83	2.5	-	0.00		
3.0	175.73	0.89	3.0	-	0.00		
3.5	189.05	0.95	3.5	-	0.00		
4.0	200.17	1.01	4.0	-	0.00		
4.5	206.76	1.04	4.5	-	0.00		
5.0	216.64	1.09	5.0	-	0.00		
5.5	224.88	1.13	5.5	-	0.00		
6.0	232.43	1.17	6.0	-	0.00		
6.5	236.82	1.19	6.5	-	0.00		
7.0	243.69	1.23	7.0	-	0.00		
7.5	249.32	1.26	7.5	-	0.00		
8.0	255.08	1.29	8.0	-	0.00		
8.5	258.79	1.31	8.5	-	0.00		
9.0	264.01	1.33	9.0	-	0.00		
9.5	267.30	1.35	9.5	-	0.00		
10.0	271.69	1.37	10.0	-	0.00		
10.5	274.17	1.38	10.5	-	0.00		
11.0	277.19	1.40	11.0	-	0.00		
11.5	280.89	1.42	11.5	-	0.00		
12.0	283.36	1.43	12.0	-	0.00		
12.5	286.11	1.44	12.5	-	0.00		
13.0	288.99	1.46	13.0	-	0.00		

TEST RESULTS

WATER CONTENT AT PENETRATION POINT, % SWELL, % CORRECTED STRESS VALUE (at 2.5 mm), MPa CORRECTED STRESS VALUE (at 5.0 mm), MPa BEARING RATIO (at 2.5 mm), % BEARING RATIO (at 5.0 mm), %

UNSOAKED	SOAKED
28.30	-
N/A	-
0.83	-
1.09	-
12.04	-
10.61	-

Checked By:

	CALIFORNIA	A BEARING RAT	IO TEST (CBR) ASTN	I D1883	
PROJECT NUMBER		18105808 (5000)	SAMPLE NUMBER	36% Soaked	d - Cement Stabilizer
PROJECT NAME		Tulloch Nation Rise	SAMPLE DEPTH (m)		-
BOREHOLE NUMBER		-	DATE		03/04/2019
		TEST INF	ORMATION		
STRAIN RATE, mm/min		1.27	PARTICLE SIZE, mm		< 19
RAM AREA, cm ²		19.44	COMPACTION	AS	TM D698 Method C
LOAD CELL NUMBER		178671	NUMBER OF LAYERS		3
SURCHARGE, kg		4.54	BLOWS PER LAYER		45
SOAKING TIME, hr		96	RELATIVE COMPACTION	, %	92
		SAMPLE IN	FORMATION		
	UNSOAKED	SOAKED		UNSOAKED	SOAKED
SAMPLE HEIGHT, cm	11.65	11.65	DRY WEIGHT, g	2785.31	2785.31
SAMPLE DIAMETER, cn	15.23	15.23	WATER CONTENT, %	36.00	38.55
SAMPLE AREA, cm ²	182.18	182.18	UNIT WEIGHT, kN/m ³	17.50	17.83
SAMPLE VOLUME, cc	2121.80	2122.01	DRY UNIT WT., kN/m ³	12.87	12.87
WET WEIGHT, g	3788.02	3859.12			
		PENET	RATION		
	UNSOAKED			SOAKED	
Penetration	Load	Bearing Stress	Penetration	Load	Bearing Stress
(mm)	(kgf)	(MPa)	(mm)	(kgf)	(MPa)
0.0	-	0.00	0.0	0.00	0.00
0.5	-	0.00	0.5	22.79	0.11
1.0	-	0.00	1.0	31.72	0.16
1.5	-	0.00	1.5	44.35	0.22
2.0	-	0.00	2.0	50.11	0.25
2.5	-	0.00	2.5	55.88	0.28
3.0	-	0.00	3.0	62.20	0.31
3.5	-	0.00	3.5	62.61	0.32
4.0	-	0.00	4.0	66.45	0.34
4.5	-	0.00	4.5	68.10	0.34
5.0	-	0.00	5.0	70.43	0.36
5.5	-	0.00	5.5	71.81	0.36
6.0	-	0.00	6.0	73.86	0.37
6.5	-	0.00	6.5	75.10	0.38
7.0	-	0.00	7.0	76.34	0.39
7.5	-	0.00	7.5	78.12	0.39
8.0	-	0.00	8.0	79.49	0.40

TEST RESULTS

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

81.42

82.24

83.75

84.85

86.36

88.01

89.38

90.34

91.71

92.54

0.41

0.41

0.42 0.43

0.44 0.44

0.45

0.46

0.46

0.47

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-

_

-

-

-

	UNSOAKED	SOAKED
WATER CONTENT AT PENETRATION POINT, %	-	35.70
SWELL, %	-	0.01
CORRECTED STRESS VALUE (at 2.5 mm), MPa	-	0.28
CORRECTED STRESS VALUE (at 5.0 mm), MPa	-	0.36
BEARING RATIO (at 2.5 mm), %	-	4.09
BEARING RATIO (at 5.0 mm), %	-	3.45

Checked By:

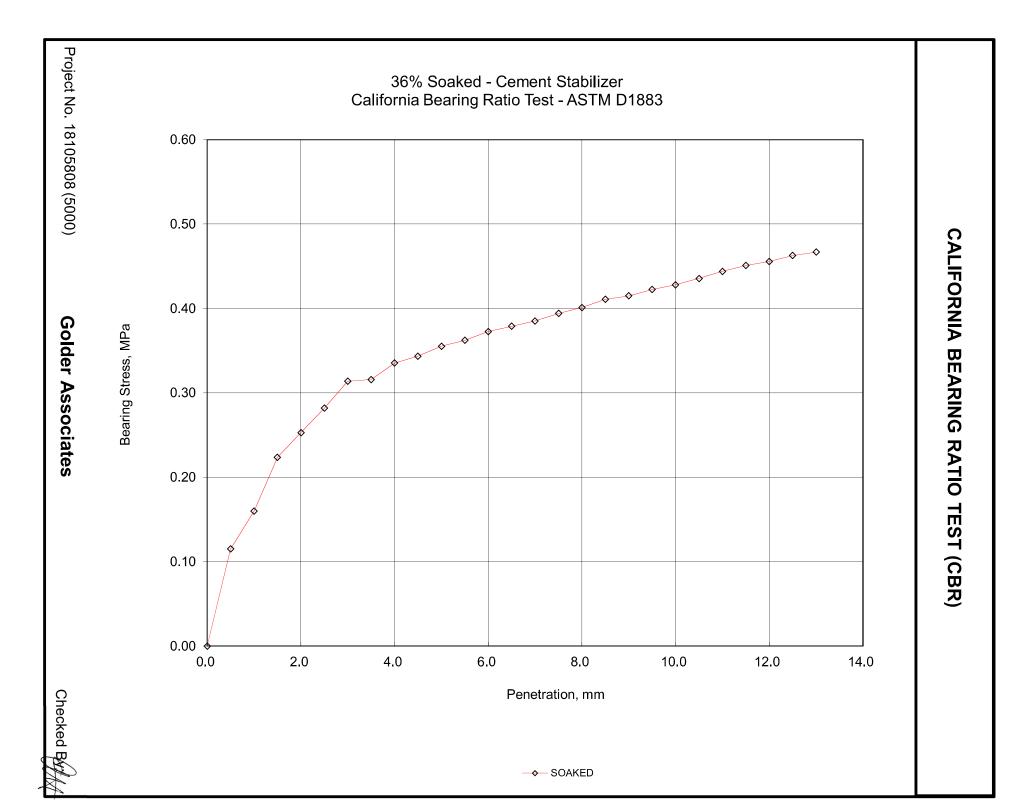
8.5

9.0

9.5

10.0

10.5


11.0

11.5

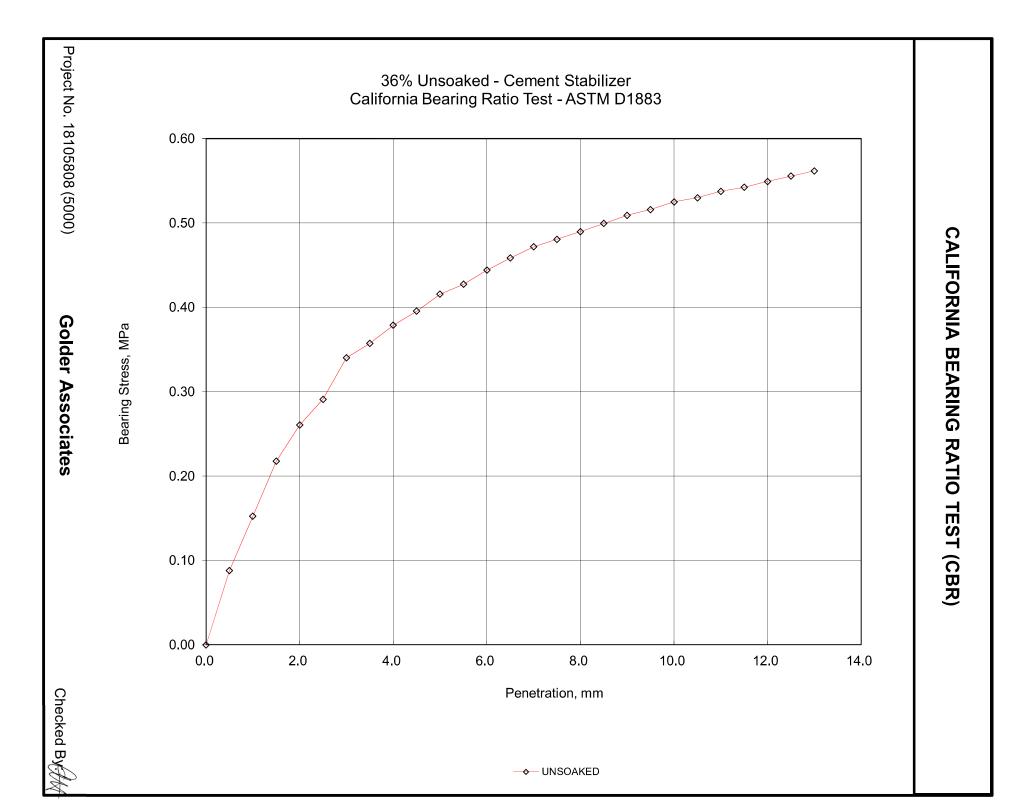
12.0

12.5

13.0

PROJECT NUMBER		18105808 (5000)	SAMPLE NUMBER	36% Unsoaked - 0	Cement Stabilizer
PROJECT NAME		Tulloch Nation Rise	SAMPLE DEPTH (m)		-
BOREHOLE NUMBER		-	DATE		03/05/2019
		TEST INF	ORMATION		
STRAIN RATE, mm/min		1.27	PARTICLE SIZE, mm		< 19
RAM AREA, cm ²		19.44	COMPACTION	ASTM	1 D698 Method C
LOAD CELL NUMBER		178671	NUMBER OF LAYERS		3
SURCHARGE, kg		4.54	BLOWS PER LAYER		45
SOAKING TIME, hr		N/A	RELATIVE COMPACTION, %		93
		SAMPLE IN	IFORMATION		
	UNSOAKED	SOAKED		UNSOAKED	SOAKED
SAMPLE HEIGHT, cm	11.65	-	DRY WEIGHT, g	2829.72	_
SAMPLE DIAMETER, cn	15.23	-	WATER CONTENT, %	34.00	-
SAMPLE AREA, cm ²	182.18	-	UNIT WEIGHT, kN/m ³	17.51	-
SAMPLE VOLUME, cc	2122.35	-	DRY UNIT WT., kN/m ³	13.07	-
WET WEIGHT, g	3791.82	-			
		PENET	RATION		

		PENEIR	ATION		
	UNSOAKED			SOAKED	
Penetration	Load	Bearing Stress	Penetration	Load	Bearing Stress
(mm)	(kgf)	(MPa)	(mm)	(kgf)	(MPa)
0.0	0.00	0.00	0.0	-	0.00
0.5	17.44	0.09	0.5	-	0.00
1.0	30.21	0.15	1.0	-	0.00
1.5	43.11	0.22	1.5	-	0.00
2.0	51.62	0.26	2.0	-	0.00
2.5	57.66	0.29	2.5	-	0.00
3.0	67.41	0.34	3.0	-	0.00
3.5	70.84	0.36	3.5	-	0.00
4.0	75.10	0.38	4.0	-	0.00
4.5	78.40	0.40	4.5	-	0.00
5.0	82.38	0.42	5.0	-	0.00
5.5	84.71	0.43	5.5	-	0.00
6.0	88.01	0.44	6.0	-	0.00
6.5	90.89	0.46	6.5	-	0.00
7.0	93.50	0.47	7.0	-	0.00
7.5	95.28	0.48	7.5	-	0.00
8.0	97.07	0.49	8.0	-	0.00
8.5	98.99	0.50	8.5	-	0.00
9.0	100.91	0.51	9.0	-	0.00
9.5	102.28	0.52	9.5	-	0.00
10.0	104.07	0.53	10.0	-	0.00
10.5	105.03	0.53	10.5	-	0.00
11.0	106.54	0.54	11.0	-	0.00
11.5	107.50	0.54	11.5	-	0.00
12.0	108.87	0.55	12.0	-	0.00
12.5	110.11	0.56	12.5	-	0.00
13.0	111.34	0.56	13.0	-	0.00

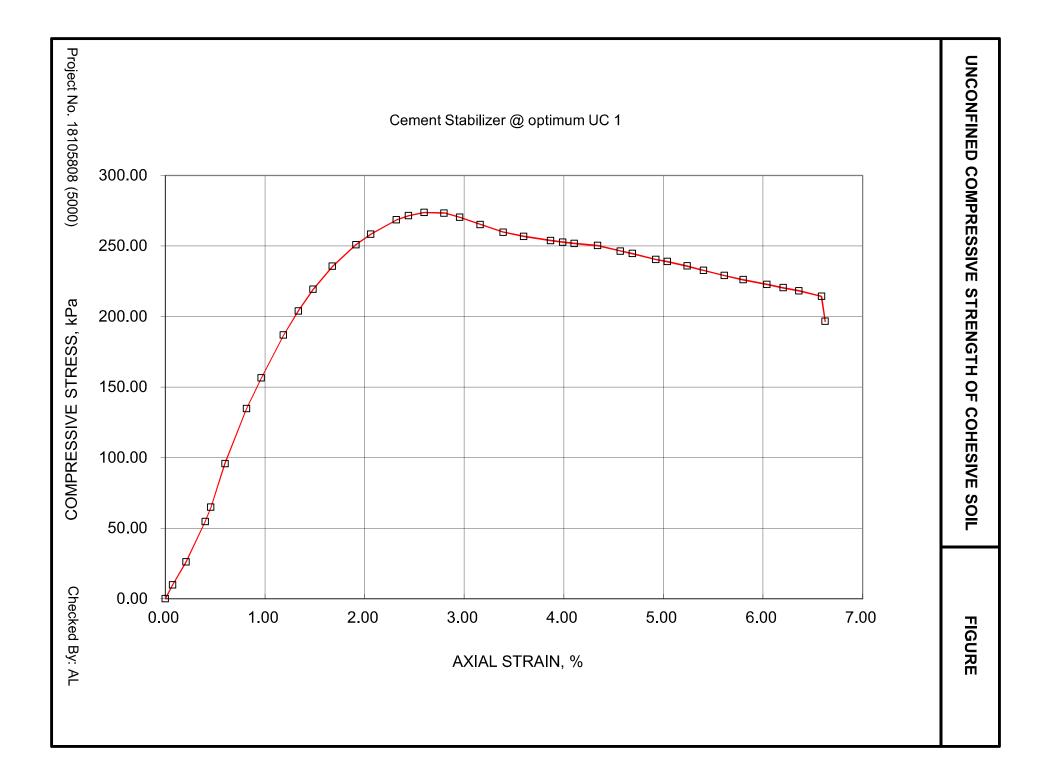

TEST RESULTS

UNSOAKED SOAKED

34.60	-
N/A	-
0.29	-
0.42	-
4.22	-
4.03	-

WATER CONTENT AT PENETRATION POINT, % SWELL, % CORRECTED STRESS VALUE (at 2.5 mm), MPa CORRECTED STRESS VALUE (at 5.0 mm), MPa BEARING RATIO (at 2.5 mm), % BEARING RATIO (at 5.0 mm), %

Checked By:

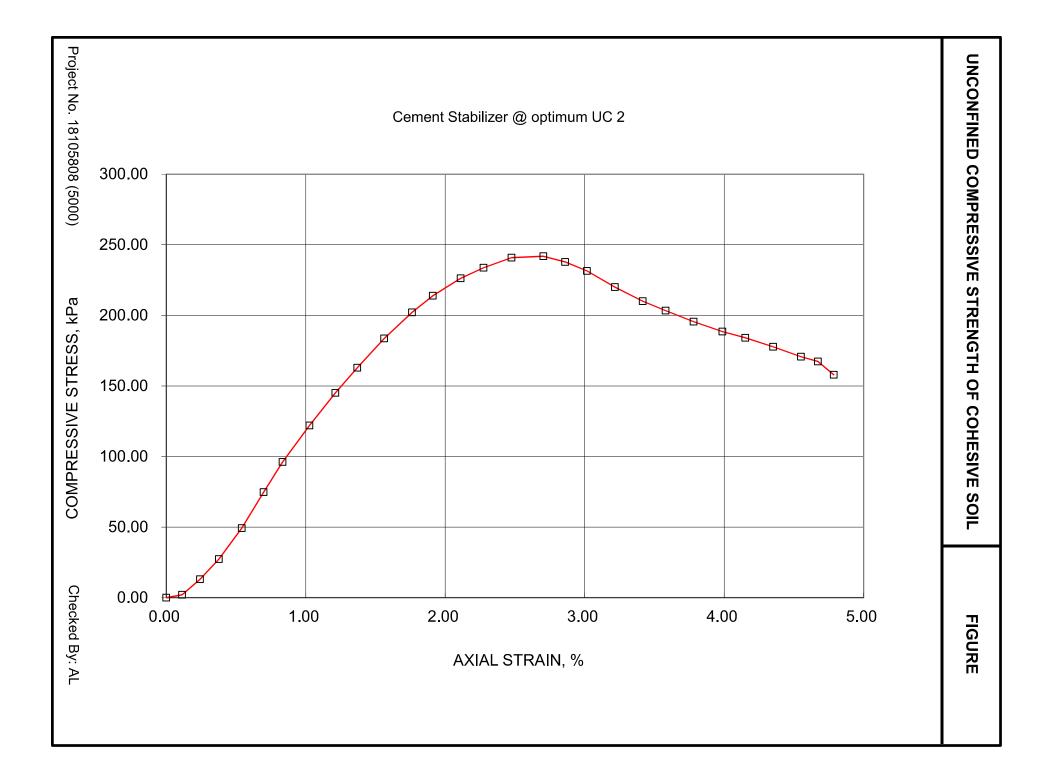


UNCONFINED COMPRESSIVE STRENGTH TEST (UC) OF COHESIVE SOIL

ASTM D 2166

SAMPLE IDENTIFICATION

PROJECT NUMBER	18105808 (5000)	SAMPLE NUMBER	UC #1
BOREHOLE NUMBER		SAMPLE DEPTH, m	-
	TEST CC	ONDITIONS	
MACHINE SPEED, mm/min	1.40	TYPE OF SPECIMEN	Compacted
RATE OF AXIAL STRAIN, %/min	1.00	L/D	2.00
	SPECIMEN	NFORMATION	
SAMPLE HEIGHT, cm	14.01	WATER CONTENT, (specimen) %	29.05
SAMPLE DIAMETER, cm	6.99	UNIT WEIGHT, kN/m^3	17.96
SAMPLE AREA, cm ²	38.37	DRY UNIT WT., kN/m ³	13.92
SAMPLE VOLUME, cm ³	537.59	SPECIFIC GRAVITY, assumed	2.70
WET WEIGHT, g	984.90	VOID RATIO	0.90
DRY WEIGHT, g	763.22		
	FAILURI	ESKETCH	
	TEST F	RESULTS	
STRAIN AT FAILURE, %	2.6 UN	CONFINED COMPRESSIVE STRENGTH, k	273.7
	SH	EAR STRENGTH, kPa	136.8
REMARKS:	DA	TE OF TESTING:	March 4, 2019



UNCONFINED COMPRESSIVE STRENGTH TEST (UC) OF COHESIVE SOIL

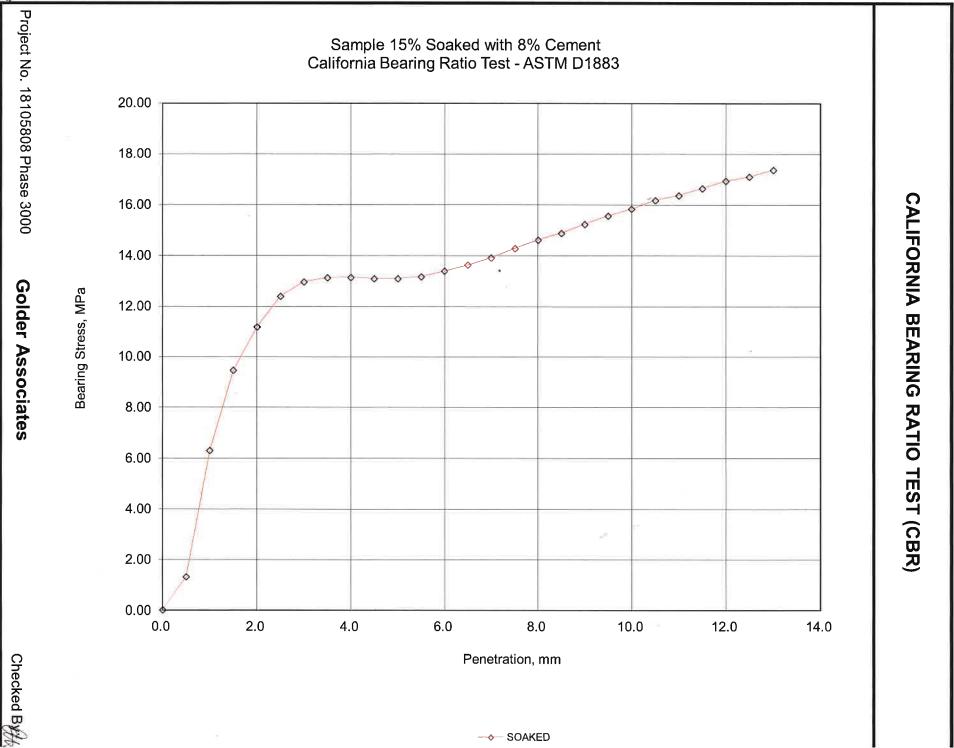
ASTM D 2166

SAMPLE IDENTIFICATION

PROJECT NUMBER	18105808 (5000)	SAMPLE NUMBER	UC #2
BOREHOLE NUMBER	-	SAMPLE DEPTH, m	-
	TEST CO	NDITIONS	
MACHINE SPEED, mm/min	1.40	TYPE OF SPECIMEN	Compacted
RATE OF AXIAL STRAIN, %/min	1.00	L/D	2.01
	SPECIMEN IN	NFORMATION	
SAMPLE HEIGHT, cm	14.02	WATER CONTENT, (specimen) %	29.23
SAMPLE DIAMETER, cm	6.99	UNIT WEIGHT, kN/m ³	17.70
SAMPLE AREA, cm ²	38.37	DRY UNIT WT., kN/m ³	13.70
SAMPLE VOLUME, cm ³	537.98	SPECIFIC GRAVITY, assumed	2.70
WET WEIGHT, g	971.43	VOID RATIO	0.93
DRY WEIGHT, g	751.71		
	FAILURE	SKETCH	
	TEST R	ESULTS	
STRAIN AT FAILURE, %	2.7 UNC	CONFINED COMPRESSIVE STRENGTH, K	241.9
	SHE	AR STRENGTH, kPa	120.9
REMARKS:	DAT	E OF TESTING:	March 4, 2019

- /-

CALIFORNIA BEARING RATIO TEST (CBR) ASTM D	883
--	-----


đ.

PROJECT NUMBER	18	105808 Phase 3000	SAMPLE NUMBER	15% Soaked with 8% Ceme		
PROJECT NAME	TullochEngineeri	ng/MaterialsTesting	SAMPLE DEPTH (m)	03/20/1		
BOREHOLE NUMBER		2	DATE			
		TEST INFO	ORMATION			
STRAIN RATE, mm/min		1.27	PARTICLE SIZE, mm		< 19	
RAM AREA, cm ²		19.44	COMPACTION	AS	TM D698 Method C	
LOAD CELL NUMBER		234341	NUMBER OF LAYERS		3	
SURCHARGE, kg		4.54	BLOWS PER LAYER		40	
SOAKING TIME, hr		96	RELATIVE COMPACTION,	%	N/A	
		SAMPLE IN	FORMATION			
	UNSOAKED	SOAKED		UNSOAKED	SOAKED	
SAMPLE HEIGHT, cm	11.65	11.65	DRY WEIGHT, g	3604.29	3604.29	
SAMPLE DIAMETER, cn	15.24	15.24	WATER CONTENT, %	13.20	20.69	
SAMPLE AREA, cm ²	182.42	182.42	UNIT WEIGHT, kN/m ³	18.83	20.07	
SAMPLE VOLUME, cc	2124.59	2124.61	DRY UNIT WT., kN/m ³	16.63	16.63	
WET WEIGHT, g	4080.06	4350.06				
		PENET	RATION			
ι	JNSOAKED			SOAKED		
Penetration	Load	Bearing Stress	Penetration	Load	Bearing Stress	
(mm)	(kgf)	(MPa)	(mm)	(kgf)	(MPa)	
0.0	0.51	0.00	0.0	1.85	0.01	
0.5	2. 2 3	0.00	0.5	259.14	1.31	
1.0	3 7 .	0.00	1.0	1249.13	6.30	
1.5	32	0.00	1.5	1875.31	9.46	
2.0	:: e :	0.00	2.0	2215.61	11.18	
2.5	3 0)	0.00	2.5	2456.31	12.39	
3.0	3 9 -3	0.00	3.0	2569.74	12.96	
3.5	3 8 3	0.00	3.5	2601.09	13.12	
4.0	940	0.00	4.0	2605.24	13.14	
4.5	14 C	0.00	4.5	2595.10	13.09	
5.0	2 2 5	0.00	5.0	2594.64	13.09	
5.5	8 2)	0.00	5.5	2610.78	13.17	
6.0	121	0.00	6.0	2654.12	13.39	
6.5	N 1921	0.00	6.5	2702,08	13.63	
7.0	1	0.00	7.0	2757.87	13.91	
7.5	T Š	0.00	7.5	2830.26	14.28	
8.0	. 	0.00	8.0	2895.28	14.61	
8.5	17	0.00	8.5	2948.77	14.88	
9.0	8 2	0.00	9.0	3017.93	15.22	
9.5	(11)	0.00	9.5	3083.41	15.56	
10.0	1.0	0.00	10.0	3136.90	15.83	
10.5		0.00	10.5	3206.99	16.18	
11.0	3 8 3	0.00	11.0	3243.88	16.36	
11.5	2 (0.00	11.5	3299.21	16.64	
12.0	a	0.00	12.0	3355.92	16.93	
12.5	545	0.00	12.5	3388.20	17.09	
13.0		0.00	13.0	3441.23	17.36	

TEST RESULTS

	UNSOAKED	SOAKED
WATER CONTENT AT PENETRATION POINT, %	3.8	16.10
SWELL, %	*	0.00
CORRECTED STRESS VALUE (at 2.5 mm), MPa		12.65
CORRECTED STRESS VALUE (at 5.0 mm), MPa	1944 - Carlo	13.12
BEARING RATIO (at 2.5 mm), %	-	183.33
BEARING RATIO (at 5.0 mm), %	4 -	127.38

Checked By:

Independent Laboratories

Soil Cement Stabilization Strength Results

Project: Nation Rise Wind Farm Date: 12/6/2018 Tested By: S. Hoffman

Contract No.: 18-4022

Speciment Type 100mm dia. Cylinders

Sample Reference	Lab Number	Load (N)	Area (mm²)	Date Cast	Compressive Strength (Mpa)	Date Tested	Remarks
					7 days		
Min # 0	18-4022-3	14234	8125	12/6/2018	1.75	12/13/2018	
Mix # 3	18-4022-3	12900	8112	12/6/2018	1.59	12/13/2018	O.M.C. @ 8% cement
Average					1.67	-	ocinent
Mix # 5	18-4022-5	12455	8121	12/6/2018	1.53	12/13/2018	
IVIIX # 5	18-4022-5	16903	8096	12/6/2018	2.09	12/13/2018	O.M.C. @ 10% cement
Average					1.81	-	ocinent
Mix # 6	18-4022-6	9786	8089	12/6/2018	1.21	12/13/2018	O.M.C.+8% moisture @
	18-4022-6	8452	8112	12/6/2018	1.04	12/13/2018	
Average					1.13	-	10% cement

TULLOCH Materials Testing Laboratory, 71 Black Road - Unit 3, Sault Ste. Marie, ON. Canada P6B 0A3 Tel: (705) 949-1457 Fax: (705) 945-5092 email: daren.stadnisky@tulloch.ca

Conseil canadien des laboratoires indépendants

Compressive Strength Test of molded Soil-Cement Cylinders

Project: Nation Rise Wind Farm

Date Cast: Tested By: 12/6/2018 S. Hoffman Contract No.: 18-4022 Date Tested: 12/13/2 Sample No.: O.M.C @

12/13/2018 O.M.C @ 8% cement

Initial Speciman Conditions		
Average Diameter	1.02mm	
Average Height	2.02mm	
Maximum Dry Density	1345 kg/m³	
Optimum Moisture	29.80%	

Compressive Strength Test Results				
Lab Number	Strength (MPa)	Average (MPa)		
18-4022-3	1.75	1.67		
18-4022-3	1.59	1.07		

TULLOCH Materials Testing Laboratory, 71 Black Road - Unit 3, Sault Ste. Marie, ON. Canada P6B 0A3 Tel: (705) 949-1457 Fax: (705) 945-5092 email: daren.stadnisky@tulloch.ca

Conseil canadien des laboratoires indépendants

Compressive Strength Test of molded Soil-Cement Cylinders

Project: Nation Rise Wind Farm

Date Cast: Tested By: 12/6/2018 S. Hoffman Contract No.: Date Tested: Sample No.:

18-4022 12/13/2018 O.M.C @ 10% cement

Initial Speciman Conditions		
Average Diameter	1.02mm	
Average Height	2.02mm	
Maximum Dry Density	1345 kg/m³	
Optimum Moisture	29.80%	

Compressive Strength Test Results				
Lab Number	Strength (MPa)	Average (Mpa)		
18-4022-5	1.53	1.81		
18-4022-5	2.09	1.01		

TULLOCH Materials Testing Laboratory, 71 Black Road - Unit 3, Sault Ste. Marie, ON. Canada P6B 0A3 Tel: (705) 949-1457 Fax: (705) 945-5092 email: daren.stadnisky@tulloch.ca

Compressive Strength Test of molded Soil-Cement Cylinders

Project: Nation Rise Wind Farm

Tested By:

Date Cast:

12/6/2018 S. Hoffman Contract No.: Date Tested: Sample No.:

18-4022

12/13/2018

8% above O.M.C @ 10 % cement

Initial Speciman Conditions			
Average Diameter	1.02mm		
Average Height	2.02mm		
Maximum Dry Density	1345 kg/m³		
Optimum Moisture	29.80%		

Compressive Strength Test Results				
Lab Number	Strength (MPa)	Average (MPa)		
18-4022-6	1.21	1.13		
18-4022-6	1.04	1.13		

TULLOCH Materials Testing Laboratory, 71 Black Road - Unit 3, Sault Ste. Marie, ON. Canada P6B 0A3 Tel: (705) 949-1457 Fax: (705) 945-5092 email: daren.stadnisky@tulloch.ca

APPENDIX I

REPORT LIMITATIONS AND GUIDELINES FOR USE

REPORT LIMITATIONS AND GUIDELINES FOR USE

This information has been provided to help manage risks with respect to the use of this report.

GEOTECHNICAL SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES, PERSONS, AND PROJECTS

This geotechnical report has been prepared for the exclusive use of the client, their authorized agents, and other members of the design team. It is not intended for use by others, and the information contained herein is not applicable to other sites, or for purposes other than those specified in the report.

TULLOCH Engineering (TULLOCH) cannot be held responsible for reliance on the information contained in this report, by persons other than the client or 'authorized' agent without prior written approval.

SUBSURFACE CONDITIONS CAN CHANGE

This geotechnical investigation report is based on existing conditions at the time the study was performed, and our opinion of soil conditions are strictly based on soil samples collected at specific borehole locations. The findings and conclusions of our reports may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations.

LIMITATIONS TO PROFESSIONAL OPINIONS

Interpretations of subsurface conditions are based on field observations from boreholes and/or test pits that were spaced to capture a 'representative' snapshot of subsurface conditions. Site exploration identifies subsurface conditions only at points of sampling. TULLOCH reviews field and laboratory data and then applies our professional judgment to formulate an opinion of subsurface conditions throughout the site. Actual subsurface conditions may differ, between sampling locations, from those indicated in this report.

LIMITATIONS OF RECOMMENDATIONS

Subsurface soil conditions should be verified by a qualified geotechnical engineer during construction. TULLOCH should be notified if any discrepancies to this report or unusual conditions are found during construction.

Sufficient monitoring, testing, and consultation should be provided by TULLOCH during construction and/or excavation activities, to confirm that the conditions encountered are consistent with those indicated by the borehole and/or test pit investigation, and to provide recommendations for design changes should the conditions revealed during the work differ from those anticipated. In addition, monitoring, testing, and consultation by TULLOCH should be completed to evaluate whether or not earthwork activities are completed in accordance with our recommendations. Retaining TULLOCH for construction observation for this project is the most effective method of managing the risks associated with unanticipated conditions. However, please be advised that any

construction/excavation observations by TULLOCH is over and above the mandate of this geotechnical investigation and therefore, additional fees would apply.

MISINTERPRETATION OF GEOTECHNICAL ENGINEERING REPORT

Misinterpretation of our report by other design team members can result in costly problems. You could lower that risk by having TULLOCH confer with appropriate members of the design team after submitting the report. Also, retain TULLOCH to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering or geologic report. Reduce that risk by having TULLOCH participate in pre-bid and pre-construction conferences, and by providing construction observation. Please be advised that retaining TULLOCH to participation in any 'other' activities associated with this project is over and above the mandate of this geotechnical investigation and therefore, additional fees would apply.

CONTRACTORS RESPONSIBILITY FOR SITE SAFETY

This geotechnical report is not intended to direct the contractor's procedures, methods, schedule or management of the work site. The contractor is solely responsible for job site safety and for managing construction operations to minimize risks to on-site personnel and to adjacent properties. It is ultimately the contractor's responsibility that the Ontario Occupational Health and Safety Act is adhered to, and site conditions satisfy all 'other' acts, regulations and/or legislation that may be mandated by federal, provincial and/or municipal authorities.

SUBSURFACE SOIL AND/OR GROUNDWATER CONTAMINATION

This report is geotechnical in nature and specifically excludes the investigation, detection, prevention or assessment of the presence of subsurface contaminants. Accordingly, the scope of services does not include any interpretations, recommendations, findings, or conclusions regarding the detection, assessment, prevention or abatement of contaminants, and no conclusions or inferences should be drawn regarding contamination, as they may relate to this project. The term "contamination" includes, but is not limited to, molds, fungi, spores, bacteria, viruses, PCBs, petroleum hydrocarbons, inorganics, pesticides/insecticides, volatile organic compounds, polycyclic aromatic hydrocarbons and/or any of their byproducts.