

QUALITY CONTROL SHEET						
DOCUMENT		ESTUDIO G	EOTÉCNICO DE	DISEÑO DE CIMEI	NTACIONES	
PROJECT		Parque Eólico Coahuila (México)				
CODE		WE1	.692-WF-FD-AX-	13-GE-EstGeCim	- Ed1	
EDITION		1				
AUTHOR	SIGNATURE	DCA/MASL				
	DATE	26/02/2015				
CHECKED BY	SIGNATURE	ALC/ MCCV				
	DATE	27/02/2015				
AUTHORIZED BY	SIGNATURE	JVM/CGR				
	DATE	27/02/2015				
DISTRIBUTED TO			E	DPR		
NOTES						

PARQUE EÓLICO DE COAHUILA.(MÉXICO) ESTUDIO GEOTÉCNICO DE DISEÑO DE CIMENTACIONES

-	ÍNDICE
	ÍNDICEi
	ÍNDICE DE TABLAS iii
	ÍNDICE DE FIGURAS
	LISTADO DE APÉNDICES
	LISTA DE SIGLAS Y ABREVIACIONES
1.	INTRODUCCIÓN Y OBJETO DEL ESTUDIO
2.	DATOS DE PARTIDA
	2.1. DATOS GEOTÉCNICOS Y GEOFÍSICOS
	2.2. GUIAS DE DISEÑO
	2.3. REQUERIMIENTOS TÉCNICOS PROPIOS DEL CLIENTE Y REFERENCIAS DEL PROYECTO
3.	FACTORES CONDICIONANTES DE DISEÑO
	3.1. BASES DE DISEÑO, METODOLOGÍA DE CÁLCULO Y REQUISITOS
	3.1.1. Bases de diseño
	3.1.2. Procedimiento de cálculo
	3.1.2.1. Area efectiva
	3.1.2.3. Capacidad portante en roca
	3.1.2.4. Deslizamiento entre la zapata y el terreno natural
	3.1.2.5. Deslizamiento entre la capa de sustitución y el terreno natural
	3.1.2.0. Rigiaez rotacional ainamica
	3.2. CARACTERÍSTICAS DEL TERRENO.
	3.2.1. Geología regional y local
	3.2.2. Nivel freático
	3.2.3. Agresividad del suelo al hormigón12
	3.3. TOPOGRAFIA
	3.4. CARGAS TRANSMITIDAS
	3.4.1. Cargas características en base de torre
	3.4.2. reso propio de la cimentación y el relieno
	profundidad)
	3.4.4. Casos de carga y efecto de las acciones (zapata desplantada a 2,0 m de profundidad)
4.	PARÁMETROS DEL TERRENO Y MODELOS DE SUELO
	4.1. INTRODUCCIÓN

	ÍNDICE	
	4.2. DATOS DE CAMPO	21
	4.3. CAMPAÑA DE LABORATORIO	22
	4.4. PARÁMETROS DE CÁLCULO	24
	4.5. MODELOS DE SUELO	25
5.	COMPROBACIONES GEOTÉCNICAS Y RESULTADOS	27
	5.1. INTRODUCCIÓN	27
	5.2. GEOMETRÍA DE LOS AEROGENERADORES	27
	5.3. COMPROBACIÓN DE LA CAPACIDAD PORTANTE	29
	5.3.1. Estructuras cimentadas en suelos y rocas blandas	
	5.3.2. Estructuras cimentadas en roca	
	5.3.2.1. Comprobación a partir de la norma de la CFE	
	5.3.2.2. Comprobación a partir del Eurocódigo	
	5.4. DESLIZAMIENTO	33
	5.5. RIGIDEZ ROTACIONAL	33
	5.6. ESTIMACIÓN DE ASIENTOS	35
6.	RECOMENDACIONES	36
	6.1. MEJORA DEL TERRENO	36
	6.2. EXCAVACIONES Y PREPARACIÓN DEL FONDO DE EXCAVACIÓN	37
7.	CONCLUSIONES	

PARQUE EÓLICO DE COAHUILA.(MÉXICO) ESTUDIO GEOTÉCNICO DE DISEÑO DE CIMENTACIONES

ÍNDICE DE TABLAS	
Tabla 2-1. Información geotécnica disponible	3
Tabla 2-2. Guías de diseño y otras referencias de cálculo	4
Tabla 2-3. Requerimientos técnicos propios del cliente (EDP)	4
Tabla 2-4. Referencias del proyecto	4
Tabla 3-1. Factores parciales para cargas, materiales y resistencias para el Design Approach 2 del EN 1997-1.	5
Tabla 3-2. Coeficiente adimensional K	9
Tabla 3.3. Deslizamiento. Factores parciales sobre materiales y resistencia.	10
Tabla 3-4. Cargas extremas en base de torre (G114-2.1MW T80m IIIA)	14
Tabla 3-5. Cargas cuasipermanentes en base de torre (G114-2.1MW T80m IIIA)	14
Tabla 3-6. Cargas características en base de torre (G114-2.1MW T80m IIIA)	14
Tabla 3-7. Correlación nomenclatura casos de carga GAMESA-MEXTYPSA	15
Tabla 3-8. Combinaciones de acciones para verificaciones geotécnicas de acuerdo con la NTC	16
Tabla 3-9. Combinaciones de acciones para verificaciones geotécnicas de acuerdo con el Eurocódigo7	16
Tabla 3-10. Acciones en base de cimentación factorizadas de acuerdo con la NTC	16
Tabla 3-11. Acciones en base de cimentación factorizadas de acuerdo con el Eurocódigo7	17
Tabla 3-12. Efecto de las acciones en base de cimentación de acuerdo con la NTC	17
Tabla 3-13. Efecto de las acciones en base de cimentación de acuerdo con el Eurocódigo7	17
Tabla 3-14. Comprobaciones geotécnicas	18
Tabla 3-15. Combinaciones de acciones para verificaciones geotécnicas de acuerdo con la NTC	18
Tabla 3-16. Combinaciones de acciones para verificaciones geotécnicas de acuerdo con el Eurocódigo7	19
Tabla 3-17. Acciones en base de cimentación factorizadas de acuerdo con la NTC	19
Tabla 3-18. Acciones en base de cimentación factorizadas de acuerdo con el Eurocódigo7	19
Tabla 3-19. Efecto de las acciones en base de cimentación de acuerdo con la NTC	20
Tabla 3-20. Efecto de las acciones en base de cimentación de acuerdo con el Eurocódigo7	20
Tabla 3-21. Comprobaciones geotécnicas.	20
Tabla 4-1. Ensayos de laboratorio realizados en los sondeos	23
Tabla 4-2. Ensayos de laboratorio realizados en los PCA	24
Tabla 4-3. Parámetros geotécnicos recomendados por MEXTYPSA en el documento WE1692-F1-AX-001- GE (Referencia [1])	25
Tabla 4-4. Calidad del macizo rocoso indicada en el documento WE1692-F1-AX-001-GE. (Referencia [1])	25

ÍNDICE DE TABLAS

Tabla 4-5. Agrupación de los modelos del terreno	.26
Tabla 5-1. Recomendaciones de espesor de sustitución bajo cota del terreno natural.	.29
Tabla 5-2. Factor de aprovechamiento. Comprobación de la capacidad portante a partir de la NTC	. 30
Tabla 5-3. Factor de aprovechamiento. Comprobación de la capacidad portante a partir del Eurocódigo7.	. 30
Tabla 5-4. Factor de aprovechamiento. Comprobación de la capacidad portante en roca a partir de la CFE. Zapatas desplantadas a 2,0 y 2,8 m de profundidad.	.31
Tabla 5-5. RQD en posiciones en roca desplantadas 2,8 mbgl	. 32
Tabla 5-6. RQD en posiciones en roca desplantadas 2mbgl	. 32
Tabla 5-7. Factor de aprovechamiento. Comprobación de la capacidad portante en roca a partir del Eurocódigo7 y la ROM0.5-05. Zapatas desplantadas a 2,0 y 2,8 m de profundidad	. 33
Tabla 5-8. Comprobación del deslizamiento a partir de la NTC y el Eurocódigo7	.33
Tabla 5-9. Módulos de corte	. 34
Tabla 5-10. Comprobación de la rigidez rotacional a partir de la NTC y el Eurocódigo7	.34
Tabla 5-11. Verificación de asientos diferenciales	. 35
Tabla 6-1. Recomendaciones de espesor de sustitución bajo cota del terreno natural	. 37

ÍNDICE DE FIGURAS

Figura 1-1. Ubicación de la zona de estudio; la elipse muestra el área general que abarca el Parque Eólico	. 1
Figura 3-1. Geometría de las zapatas circulares con área efectiva de la cimentación sombreada	. 7
Figura 3-2. Sistema de coordenadas de las cargas	14
Figura 5-1. Diseño de zapata de 17,0 metros de diámetro, desplantada a 2,8 mbgl	28
Figura 5-2. Diseño de zapata de 17,0 metros de diámetro, desplantada a 2,0 mbgl	28
Figura 5-3. Diseño de zapata de 17,0 metros de diámetro, desplantada a 2,8 mbgl. Con mejora del terreno.	29
Figura 5-4. Asientos diferenciales debidos a la carga característica extrema en estado límite de servicio (SLS). Resultados a cota de cimentación.	36

LISTADO DE APÉNDICES

APÉNDICE 1: CASOS DE CARGA Y EFECTOS DE LAS ACCIONES. APÉNDICE 1-1: Zapata superficial. Zapata desplantada a 2,8 mbgl. APÉNDICE 1-1-1: Cálculo a partir de NTC. APÉNDICE 1-1-2: Cálculo a partir del Eurocódigo 7. APÉNDICE 1-2: Zapata superficial. Zapata desplantada a 2,0 mbgl. APÉNDICE 1-2-1: Cálculo a partir de NTC. APÉNDICE 1-2-2: Cálculo a partir del Eurocódigo 7. APÉNDICE 2: MODELOS DE SUELO CONSIDERADOS. APÉNDICE 3: COMPROBACIONES GEOTÉCNICAS. MODELO DE SUELO UG1. APÉNDICE 3-1: Capacidad portante. APÉNDICE 3-1-1: Comprobación a partir de NTC. APÉNDICE 3-1-2: Comprobación a partir del Eurocódigo 7. APÉNDICE 3-2: Deslizamiento y Rigidez rotacional. APÉNDICE 3-2-1: Comprobación a partir de NTC. APÉNDICE 3-2-2: Comprobación a partir del Eurocódigo 7. APÉNDICE 3-3: Estimación de asientos. APÉNDICE 4: COMPROBACIONES GEOTÉCNICAS. MODELO DE SUELO UG2. APÉNDICE 4-1: Capacidad portante. APÉNDICE 4-1-1: Comprobación a partir de NTC. APÉNDICE 4-1-2: Comprobación a partir del Eurocódigo 7. APÉNDICE 4-2: Deslizamiento y Rigidez rotacional. APÉNDICE 4-2-1: Comprobación a partir de NTC. APÉNDICE 4-2-2: Comprobación a partir del Eurocódigo 7. APÉNDICE 4-3: Estimación de asientos. APÉNDICE 5: COMPROBACIONES GEOTÉCNICAS. MODELO DE SUELO UG3. APÉNDICE 5-1: Capacidad portante. APÉNDICE 5-1-1: Comprobación a partir de NTC. APÉNDICE 5-1-2: Comprobación a partir del Eurocódigo 7. APÉNDICE 5-2: Deslizamiento y Rigidez rotacional. APÉNDICE 5-2-1: Comprobación a partir de NTC. APÉNDICE 5-2-2: Comprobación a partir del Eurocódigo 7. APÉNDICE 6: COMPROBACIONES GEOTÉCNICAS. MODELO DE SUELO UG4 FRACTURADO.

LISTADO DE APÉNDICES

APÉNDICE 6-1: Capacidad portante.

APÉNDICE 6-1-1: Comprobación a partir de NTC.

APÉNDICE 6-1-2: Comprobación a partir del Eurocódigo 7.

APÉNDICE 6-2: Deslizamiento y Rigidez rotacional.

APÉNDICE 6-2-1: Comprobación a partir de NTC.

APÉNDICE 6-2-2: Comprobación a partir del Eurocódigo 7.

APÉNDICE 7: COMPROBACIONES GEOTÉCNICAS. MODELO DE SUELO UG4 ROCA SANA.

APÉNDICE 7-1: Capacidad portante.

APÉNDICE 7-1-1: Comprobación a partir de CFE.

APÉNDICE 7-1-1-1: Zapata desplantada a 2,8 mbgl.

APÉNDICE 7-1-1-2: Zapata desplantada a 2,0 mbgl.

APÉNDICE 7-1-2: Comprobación a partir del Eurocódigo 7 y ROM 0.5-05.

APÉNDICE 7-1-2-1: Zapata desplantada a 2,8 mbgl.

APÉNDICE 7-1-2-2: Zapata desplantada a 2,0 mbgl.

LISTA	DE SIGLAS Y ABREVIACIONES
ASTM	American Society for Testing and Materials
BS	British Standard / Estándar Británico
BSCS	British Standard Classification System
CFE	Comisión federal de la electricidad
Cu	Undrained shear strength / Resistencia al corte no drenada
DA2	Design Approach 2
FEM	Finite Element Method or Model / Modelo de elementos finitos
GPS	Global Positioning System / Sistema de Posicionamiento Global
O&M	Área de operación y mantenimiento
mbgl	Meters Below Ground Level / Metros bajo cota de terreno natural
NTC	Normas Técnicas Complementarias sobre Criterios y Acciones para el Diseño Estructural de las
	Edificaciones de la Gaceta Oficial del Distrito Federal de México
SLS	Serviceability Limit States / Estado límite de Servicio
SPT	Standard Penetration Test / Ensayo de penetración estándar
ULS	Ultimate Limit States /Estado límite último
UGX	Unidad Geotécnica X

1. INTRODUCCIÓN Y OBJETO DEL ESTUDIO

El Proyecto del Parque Eólico de Coahuila se ubica cerca del poblado conocido como Hipólito, que se encuentra unos 50 km al norponiente de la ciudad de Saltillo, capital del Estado de Coahuila.

El área del proyecto abarca del orden de 1,000 ha en un predio de forma irregular que se encuentra aproximadamente entre las coordenadas 25° 37.61′ y 25° 43.33′ de Latitud Norte y 101° 24.30′ y 101° 30.31′ de Longitud Oeste (ver Figura 1-1).

La parte norte del predio pertenece a la Sierra de La Paila, por lo que la topografía es montañosa; hacia el sur, la topografía es sensiblemente plana, inicialmente algo inclinada al pie de la sierra mencionada y gradualmente horizontal al final, aunque presentando en la parte suroeste una zona de lomerío suave.

Las estructuras civiles del proyecto comprenden principalmente la construcción de **95 aerogeneradores,** de los cuales 86 se han identificado secuencialmente de A01 a A86, 9 de B01 a B08 y B10, la subestación eléctrica, cuatro torres meteorológicas, el área de laydown, el área de Mfacility, plataformas, así como el diseño de una red de vialidades locales que comunicarán a los aerogeneradores y a las estructuras complementarias.

Figura 1-1. Ubicación de la zona de estudio; la elipse muestra el área general que abarca el Parque Eólico.

El objetivo del presente Informe de Diseño Geotécnico es exponer y justificar las hipótesis adoptadas, dar las condiciones geotécnicas y las recomendaciones de cimentación para el diseño de las cimentaciones de los aerogeneradores. Éste, debe ser leído junto con las notas de cálculo estructural de cimentaciones incluidas en los planos de diseño, el documento de cálculo de estructuras y el estudio geológico-geotécnico del parque eólico.

Cabe destacar, que los puntos mencionados a continuación quedan fuera del alcance del presente estudio:

- Recomendación de cimentación de la posición B-10 (investigación geotécnica de campo en proceso).
- Recomendación de cimentación de las nuevas ubicaciones de los aerogeneradores A39 y A40 (investigación geotécnica de campo en proceso).
- Recomendación de cimentación en las posiciones donde se ha detectado evidencia de cavidades (posiciones A44, A45 y A49).
- Diseño de la cimentación de las torres meteorológicas (responsabilidad del contratista). El terreno de apoyo de éstas estructuras y las propiedades geotécnicas de éstos pueden consultarse en el documento WE1692-WF-DD-AX-12-GE-EstGeot-Ed1 (ver referencia [1])
- Diseño de cimentaciones (en el caso de que existiesen) en las áreas de laydown y Mfacility (responsabilidad del contratista). El tipo de terreno detectado en estas áreas y las propiedades geotécnicas de éstos pueden consultarse en el documento WE1692-WF-DD-AX-12-GE-EstGeot-Ed1 (ver referencia [1])

Además, el diseño de cimentación de las posiciones que cimentan sobre pequeño espesor de la unidad geotécnica UG2 (A6O, A71, A79, A8O, A83 y A84) está pendiente del estudio de posible riesgo de colapsabilidad. En el caso de que no haya riesgo, el diseño de cimentación en estas posiciones será válido. En caso contrario, serán necesarias las mejoras del terreno indicadas en el plano WE1692-WF-FD-DW-14-ST-FoundForms-Ed.

El diseño de cimentación de las posiciones que cimentan sobre la unidad geotécnica UG2 (A57, A58, A59, A74, A75, A76, A77, A78, A81 y A82) está pendiente del estudio de posible riesgo de colapsabilidad. En el caso de que no haya riesgo, el diseño de cimentación propuesto para estas posiciones será válido. En caso contrario, será necesario tomar las medidas oportunas para evitar dicho riesgo..

Los puntos anteriormente mencionados serán agregados en cuanto se dispongan de los ensayos de campo y de laboratorio propuestos para la ampliación de los trabajos contemplados inicialmente.

El diseño de los viales de acceso se define en el documento WE1692-WF-FD-AX-1-OL-VialPlat-Ed1a. Mientras que las recomendaciones de cimentación de la subestación quedan definidas en el documento WE1692-WF-FD-AX-4-ST-Cimentaciones-Ed1.

2. DATOS DE PARTIDA

2.1. DATOS GEOTÉCNICOS Y GEOFÍSICOS

Se dispone de la siguiente información de las condiciones del subsuelo en la ubicación del parque eólico.

N⁰	Documento	Referencia	Autor	Fecha de edición
[1]	ESTUDIO GEOLÓGICO-GEOTÉCNICO. PARQUE EÓLICO DE COAHUILA, MÉXICO	WE1692-WF-DD-AX-12- GE-EstGeot-Ed1	Mextypsa	19/12/2014

Nº	Documento	Referencia	Autor	Fecha de edición
[2]	ESTUDIO DE CARACTERIZACIÓN	20000069-01.0	Vorsevi	10/12/2013
	GOTÉCNICA PRELIMINAR			

Tubla 2 1. Información geolecifica disponible	Tabla 2-1	. Información	geotécnica	disponible.
---	-----------	---------------	------------	-------------

Tal y como se indica en la referencia [1], se llevó a cabo un sondeo en el centro de cada aerogenerador, así como en el centro de cada torre meteorológica, en el área de laydown 2 y en el área de Mfacility. Además, también se llevaron a cabo 23 pozos a cielo abierto.

La ubicación de los sondeos en las posiciones de los centros de los aerogeneradores, torres meteorológicas, subestación y O&M área se realizó mediante levantamiento topográfico, mientras que el sondeo en el área de Layout 2 fue ubicado por el equipo de MEXLUSA con herramientas tipo GPS manuales a partir de las coordenadas indicadas.

La Referencia [1] incluye un estudio geofísico mediante perfiles de tomografía sísmica de refracción de 100 m de longitud cada uno, 30 ensayos MASW (a relación de 3 ensayos MASW por perfil de tomografía sísmica de refracción), 25 perfiles de tomografía de resistividad eléctrica de 117.5 m y 8 sondeos eléctricos verticales.

Todos los registros y resultados de la información descrita anteriormente pueden consultarse en la referencia [1].

Tal y como se ha mencionado en la sección 1. el diseño de cimentaciones B-O a B-13, A39, A40, A44, A45 y A49 queda fuera del alcance de este estudio. Además, las posiciones que cimentan sobre la unidad geotécnica UG2 quedarán pendientes del estudio del posible riesgo de colapsabilidad. Estos puntos serán agregados en cuanto se disponga de los ensayos de campo y de laboratorio propuestos para la ampliación de los trabajos contemplados inicialmente.

El análisis de los datos del terreno a partir de la referencia [1], evidencia la existencia de 4 unidades geotécnicas predominantes en la zona de estudio:

- UG1 Depósitos de Abanicos Aluviales: Conglomerados formados por grava y fragmentos de caliza, subredondeados a redondeados, empacados en una matriz arcillo limosa o limo arcillosa, café claro, que a menudo presenta cierta cementación por carbonato de calcio. Eventualmente, contiene intercalaciones de arcillas y limos de consistencia muy firme a dura. Su espesor puede variar entre 3 y 15 m; le subyacen calizas y lutitas. Edad del Holoceno (Período Cuaternario).
- UG2 Aluvión Arcillas limosas y limos arcillosos, café claro, de consistencia muy firme a dura. Su espesor puede variar entre 2 y 14 m; le suyacen lutitas y calizas. Edad del Holoceno (Período Cuaternario).
- UG3 Lutitas intercaladas con calizas: Alternancia de calizas y lutitas. Las calizas son de color gris, laminadas, en estratos de 8 a 20 cm de espesor; las lutitas son de color café, en estratos de 3 a 5 cm de espesor. Corresponde a la Formación Indidura. Edad del Cenomaniano al Turoniano (Terciario).
- UG4. Calizas: Calizas café claro en superficie y gris en fractura, con horizontes fosilíferos, en estratos de 0.3 a 0.6 m de espesor. Muestran cavidades de disolución ligeras a moderadas en los 15 m superiores; a mayor profundidad pueden presentar cavidades aleatorias importantes con altura de 6 a 8 m y ancho de 5 a 10 m. Pertenecen a la Formación Treviño. Edad del Albiano Superior (Período Cretácico Inferior).

2.2. GUIAS DE DISEÑO

Se han consultado las siguientes guías de diseño para el diseño geotécnico de las cimentaciones:

N⁰	Referencia	Título	Fecha de edición
[3]	EN-1997-1	Eurocode 7: Geotechnical Design – Part 1: General rules.	2004
[4]	EN-1997-2	Eurocode 7: Geotechnical Design – Part 2: Ground investigation and testing.	2007
[5]	-	Guidelines for Design of Wind Turbines, DNV RISO.	2002
[6]	-	Recommandations sur la conception, le calcul, l'exécution et le côntrole des fondations d'éoliennes. CFMS.	2011
[7]	ROM 0.5-05	Spanish Recommendations for Maritimes Works (Ministerio de Fomento de España) - Geotechnical Recommendations.	2005
[8]	TOMO II No. 103- BIS	NORMAS TÉCNICAS COMPLEMENTARIAS SOBRE CRITERIOS Y ACCIONES PARA EL DISEÑO ESTRUCTURAL DE LAS EDIFICACIONES (GACETA OFICIAL DEL DISTRITO FEDERAL)	2004
[9]	Sección B-Tomo 1- Tema 3-Capítulo 3	MANUAL DE DISEÑO DE OBRAS CIVILES (COMISIÓN FEDERAL DE ELECTRICIDAD (CFE), MÉXICO)	1981

Tabla 2-2. Guías de diseño y otras referencias de cálculo.

Cuando se han utilizado otras referencias de diseño, se citan las fuentes en el informe.

2.3. REQUERIMIENTOS TÉCNICOS PROPIOS DEL CLIENTE Y REFERENCIAS DEL PROYECTO

Se han seguido los siguientes requerimientos del cliente:

Nº	Referencia	Título	Fecha de edición
[10]	F12-22-144 v1.0	FOUNDATION LOADS FOR G114_2.1MW T80 & T93 FOR EOLICA DE COAHUILA WIND FARM (GAMESA)	01/22/2015

Tabla 2-3. Requerimientos técnicos propios del cliente (EDP)

Se han utilizado las siguientes referencias del proyecto:

Nº	Referencia	Título	Fecha de edición
[11]	WE1692-WF-FD-AX-4-ST- Cimentaiciones-Ed1	Diseño estructural de Cimentaciones.	20/02/2015
[12]	WE1692-WF-FD-DW-14-ST- FoundForms-Ed	Plano. WTG Foundations: Formas	20/02/2015

Tabla 2-4. Referencias del proyecto

3. FACTORES CONDICIONANTES DE DISEÑO

3.1. BASES DE DISEÑO, METODOLOGÍA DE CÁLCULO Y REQUISITOS

3.1.1. Bases de diseño

Todas las verificaciones geotécnicas se han realizado en base a tres criterios de diseño. En primer lugar, para las estructuras apoyadas sobre suelos o rocas blandas se han aplicado los criterios que se establecen en las Normas Técnicas Complementarias sobre Criterios y Acciones para el Diseño Estructural de las Edificaciones de la Gaceta Oficial del Distrito Federal de México (NTC). En segundo lugar, para las estructuras apoyadas en roca, se ha empleado el Manual de Diseño de Obras Civiles de la Comisión Federal de Electricidad de México (CFE). Por último, a modo de comprobación y verificación de los resultados, se han aplicado los criterios especificados en el Eurocodigo 7 (EN1997-1).

De acuerdo con la NTC, se comprueba la seguridad de la cimentación a través de la aplicación de coeficientes parciales a las acciones y a las resistencias al mismo tiempo. Mientras que, por su parte, los parámetros resistentes del terreno no han de ser factorizados.

Según el Manual de Diseño de Obras Civiles, se puede estimar la capacidad portante admisible de una cimentación en roca con un factor de seguridad global de 3 para la falla general de dicha cimentación a partir de la resistencia a compresión uniaxial y el valor promedio del espaciamiento de las juntas.

Por su parte, según el Eurocódigo 7, las comprobaciones de los estados límites últimos (ULS-GEO) para la cimentación superficial se realizan de acuerdo al Design Approach 2. La filosofía del Design Approach 2 es, del mismo modo que en el NTC, comprobar la seguridad de la cimentación mediante la aplicación de los coeficientes parciales a las acciones y las resistencias simultáneamente, mientras que los parámetros resistentes del terreno se dejan sin mayorar. Por tanto, se utilizan los conjuntos de coeficientes parciales: A1 + M1 + R2, indicados en la Tabla 3-1.

	Design Approach 2			\checkmark	\downarrow	\downarrow
	Partial Factor Set			A1	M1	R2
	Dermanent Actions (C)	Unfavourable	γ_{G}	1,35		
	Permanent Actions (G)	Favourable	γ _{G,fav}	1,0	•	
	Variable Actions (0)	Unfavourable	γ _Q	1,5	•	
	Variable Actions (Q)	Favourable	γ _{Q,fav}	0,0	-	
	Coefficient of shearing resistance (tan ϕ)		γ_{φ}		1,0	
	Effective cohesion (c')		γ _c ′		1,0	
	Undrained shear strength (cu)		γ _{cu}		1,0	
	Bulk unit weight (γ)		γ_{γ}		1,0	
Shallow	Bearing resistance (R _v)		γ_{Rv}			1,4
Foundation	Sliding resistance(R _h)		γ_{Rh}			1,1

La siguiente tabla resume todos los factores parciales que se han utilizado en las comprobaciones de los ULS GEO según Design Approach 2:

Tabla 3-1. Factores parciales para cargas, materiales y resistencias para el Design Approach 2 del EN 1997-1.

Para los factores parciales de carga, tanto para el NTC como para el Eurocódigo 7, deben utilizarse las combinaciones más desfavorables para el diseño. En particular, cuando el efecto del peso propio puede ser favorable, se han estudiado dos factores parciales para estas cargas, según sea una carga favorable o desfavorable en cada caso.

Finalmente, para los estados límite de servicio, tanto para el NTC como para el Eurocódigo 7, todos los factores parciales se establecen igual a 1,0, ya que en las comprobaciones se utilizan los valores característicos.

3.1.2. Procedimiento de cálculo

El procedimiento de análisis se inicia con el cálculo de las tensiones transmitidas por el aerogenerador en el plano de cimentación. Se tiene como dato de partida el esquema de acciones a pie de torre transmitidas por los aerogeneradores.

Una vez asegurada la estabilidad mecánica del aerogenerador, tanto **estabilidad frente a vuelco** como frente a **deslizamiento**, debe asegurarse que el terreno de apoyo presenta la rigidez rotacional requerida, capacidad portante suficiente para las tensiones a las que está solicitado y que los asientos estimados sean inferiores a los límites establecidos. El procedimiento seguido para el cálculo de las comprobaciones geotécnicas es por tanto el siguiente:

- Comprobación de la estabilidad frente al **deslizamiento**.
- Comprobación de la estabilidad frente al vuelco (realizado en el documento WE1692-WF-FD-AX-4-ST-Cimentaciones-Ed1)
- Comprobación de la **capacidad portante**.
- Comprobación de **asientos** producidos en el terreno bajo el plano de fundación.
- Valoración del módulo de corte para la posterior comprobación de la rigidez rotacional del terreno de apoyo.

Estas comprobaciones son inherentes al terreno de cimentación y se llevan a cabo de manera global en las posiciones más desfavorables. El procedimiento de cálculo por lo tanto sigue los pasos siguientes:

- 1) Estimación del corte litológico correspondiente al emplazamiento de cada posición de cálculo.
- 2) Determinación de los parámetros geotécnicos representativos de cada nivel considerado.
- 3) Comprobación de la rigidez rotacional.
- 4) Determinación de la capacidad portante del terreno. Comparación con las tensiones transmitidas en los aerogeneradores.
- 5) En el caso de que la capacidad portante del terreno sea suficiente para el diseño de cimentaciones directas, se lleva a cabo un análisis de estimación de asientos.
- 6) En el caso de que la capacidad portante del terreno o la rigidez rotacional no sea suficiente, o bien que los asientos estimados sean superiores a los considerados admisibles, se valoran soluciones alternativas de cimentación.

La estimación del corte litológico se ha realizado de forma individual para todas las posiciones del parque a partir de los resultados de los sondeos que se incluyen en la referencia [1]. Del mismo modo, los parámetros geotécnicos de las diferentes capas de de suelo son los que se definen en los apartados de caracterización geotécnica de dicha referencia.

3.1.2.1. Área efectiva

El concepto del área efectiva con dimensiones efectivas se utiliza para evaluar la presión de apoyo de diseño de acuerdo con las fórmulas dadas en la referencia [5].

Figura 3-1. Geometría de las zapatas circulares con área efectiva de la cimentación sombreada.

3.1.2.2. Capacidad portante en suelos y rocas blandas

Según la NTC, el cálculo de la carga de hundimiento depende las características de los suelos en la zona de desplante de la zapata. Se establecen dos casos:

Suelos cohesivos:

$$\frac{\Sigma Q F_c}{A} < c_u N_c F_R + p_V$$

Suelos friccionales:

$$\frac{\Sigma Q F}{A} < \left[\frac{\overline{p}_{v} \left(N_{q} - 1 \right) + \frac{\gamma B N_{\gamma}}{2} \right] F_{R} + p_{v}$$

Donde:

- $\sum Q \cdot F_c$: es la suma de las acciones verticales a tomar en cuenta en la combinación considerada en el nivel de desplante, afectada por su respectivo factor de carga.
- A: es el área efectiva del cimiento (ver apartado 3.1.2.1.).
- **p**_v: es la presión vertical total a la profundidad de desplante por peso propio del suelo.
- p_v: es la presión vertical efectiva a la misma profundidad.

- **Υ**: es el peso volumétrico del suelo.
- Cu: resistencia al corte sin drenaje.
- B: es el ancho de la cimentación. En nuestro caso se ha utilizado el ancho efectivo Beff.
- N_a, N_c y N_r: coeficientes de capacidad de carga (especificados en el Apéndice 3-1-1).

Por su parte, en el Eurocódigo 7, la carga de hundimiento se estima de acuerdo a la formulación analítica de Brinch-Hansen, cuyo resultado es la suma de tres términos que representan la contribución a la capacidad de soporte del mimo:

- La sobrecarga existente al nivel de fundación q₀.
- La cohesión del terreno c.
- El peso propio γ.

Según la expresión:

$$qh = c \cdot N_c \cdot d_c \cdot s_c \cdot i_c \cdot t_c + q_0 \cdot N_q \cdot d_q \cdot s_q \cdot i_q \cdot t_q + \frac{1}{2} \cdot B^* \cdot \gamma \cdot N_\gamma \cdot d_\gamma \cdot s_\gamma \cdot i_\gamma \cdot t_\gamma$$

Donde:

- q_h: presión vertical de hundimiento.
- c: cohesión del terreno (drenada o no drenada dependiendo de si la situación comprobada es a largo o corto plazo respectivamente).
- q₀: presión vertical a la cota de la base del cimiento.
- γ: peso específico del terreno por debajo de la base del cimiento.
- B*: el ancho equivalente del cimiento.
- N_: factores de capacidad de carga.
- s_, i_: coeficientes correctores de forma y de inclinación de la carga.

Esta formulación permite el cálculo de la presión vertical admisible tanto para las consideraciones de largo como de corto plazo (condiciones drenadas y no drenadas respectivamente) como se puede ver en el Apéndice 3-1-2.

El factor de seguridad frente al hundimiento de las zapatas es el que establece el DA2. Una vez aplicado este factor se obtiene la presión vertical admisible.

3.1.2.3. Capacidad portante en roca

De acuerdo con la Referencia [9], la formulación para el cálculo de la capacidad portante a emplear es función de si la roca objeto de estudio es sana o se considera fisurada. Así pues, se expone la metodología empleada para los dos casos:

 Roca sana: este tipo de roca es frecuentemente más resistente y menos deformable que el concreto y, por tanto, el cálculo de su capacidad de carga es, a menudo, innecesario. Sin embargo, se

recomienda emplear como capacidad de carga un valor no mayor al cuarenta por ciento de la resistencia a la compresión no confinada medida en el laboratorio en especímenes de roca intacta. El empleo de esta capacidad de carga conservadora se justifica por el efecto de escala, es decir, por la diferencia que puede existir entre la resistencia de una masa rocosa y la de un espécimen en el laboratorio.

2) Roca fisurada: se estima la carga admisible de la masa rocosa para un factor de seguridad de 3 contra la falla general de la cimentación cuando el espaciamiento entre juntas es mayor de 0,30 m, la abertura de discontinuidades es menor de 0,5 cm y el ancho de la cimentación es mayor de 0,30 m. Se aplica la siguiente expresión:

$$q = k \cdot R_c$$

Donde:

- q: presión de contacto estructura-roca permisible, en kg/cm².
- Rc: resistencia a la compresión uniaxial, en kg/cm².
- k: coeficiente adimensional que tiene en cuenta la diferencia que puede existir entre la resistencia de la masa rocosa y la de los especímenes ensayados en laboratorio. Este coeficiente es estimado a partir de la tabla 1.1 de la página 3.3.5 de la Referencia [9] (ver Tabla 3-2).

Espaciamiento de las discontinuidades	К
Mayor de 3 m	0.40
De 1 a 3 m De 0 3 a 1 m	0.25
De 1 a 3 m De 0.3 a 1 m	0.

Tabla 3-2. Coeficiente adimensional K.

Por su parte, también se ha comprobado la capacidad portante de la cimentación siguiendo el enfoque del Eurocódigo 7 (Referencia [3]). La formulación empleada para tal enfoque ha sido la especificada en la ROM 0.5-05 (Referencia [7]), la cual se expone a continuación:

$$p_{v} = 3 \cdot \sqrt{p_{0} \cdot q_{u,d}} \cdot f_{d} \cdot f_{A} \cdot f_{\delta} \quad \mathbf{y} \quad p_{v,d} = \frac{p_{v}}{\gamma_{Rv}}$$

Donde:

- p_v: capacidad portante.
- p₀: presión de referencia = 1 MPa.
- q_{u,d}: resistencia a compresión simple de diseño.
- f_d: influencia de la inclinación de la carga.
- f_A: influencia del grado de meteorización de la carga.
- f_d: influencia del espaciamiento de las discontinuidades.
- p_{v,d}: capacidad portante de diseño.
- γ_R: factor de minoración para el cálculo de la capacidad portante de diseño.

3.1.2.4. Deslizamiento entre la zapata y el terreno natural

La verificación se realiza para los ELU a partir de la clásica formulación analítica indicada en las Referencias [3], [5] y [6].

Esta verificación consiste en comprobar que el efecto de las acciones horizontales es menor que la resistencia horizontal de diseño.

La ecuación de verificación es la siguiente:

$$H_{Ed} \leq H_{Rd} = \frac{V_{d,MIN} \cdot tan\left(k \cdot atan\left(\frac{tan\varphi_{ltp,k}}{\gamma_{\varphi}}\right)\right)}{\gamma_{Rh}}$$

Donde:

- V_{d,MIN}: acción vertical actuante en base de cimentación.
- H_{Ed}: acción horizontal actuante en base de cimentación.
- H_{Rd}: resistencia a cortante de diseño.
- k: coeficiente de fricción tomado igual a 1 según las recomendaciones del apartado 6.5.3 de la EN 1997-1.
- φ'_{Itp,k}: ángulo de fricción efectivo de resistencia al cortante de la capa de transición (valor característico).
- γ_{o} : factor parcial de minoración del parámetro resistente.
- γ_{Rh}: factor de seguridad sobre la resistencia al cortante.

De acuerdo con las referencias indicadas, los valores de los factores parciales de seguridad para el deslizamiento son:

Nombre	Factor	Caso	Valor
Ángulo de resistencia al cortante (tan ϕ ')	γ_{Φ}	-	1,0
Resistencia al deslizamiento (Rh)	γ _{Rh}	ELU	1,1
		1	

Tabla 3.3. Deslizamiento. Factores parciales sobre materiales y resistencia.

En el caso de las posiciones en las que se ha sustituido el material bajo la cota de apoyo, se ha seguido esta misma metodología para la comprobación de deslizamiento entre la zapata y el terreno sustituido. Para la comprobación de deslizamiento entre el material de sustitución y el terreno natural ver el apartado siguiente.

3.1.2.5. Deslizamiento entre la capa de sustitución y el terreno natural

Para los casos en los que se sustituya el terreno bajo la cimentación, se adapta la anterior formulación al plano ubicado entre la capa inferior del material de sustitución y el terreno natural obteniendo la siguiente ecuación de verificación:

$$H_{Ed} \leq H_{Rd} = \frac{V_{d,MIN} \cdot \frac{tan\left(\min\left(\varphi_{ltp,k}^{'}; \varphi_{eq,k}^{'}\right)\right)}{\gamma_{\varphi}}}{\gamma_{Rh}}$$

Donde:

 φ'eq,k: ángulo de fricción efectivo de resistencia al cortante del terreno mejorado (valor característico).

En este caso V_{d,MIN} incluye el peso de la capa de transición teniendo en cuenta únicamente el área comprimida.

3.1.2.6. Rigidez rotacional dinámica.

Se determina la rigidez rotacional, constante que relaciona el momento con el ángulo de giro, según los procedimientos indicados en la guía danesa "Guidelines for Design of Wind Turbines" (ver sección 8.4 de la referencia [5]).

La formulación de la rigidez rotacional proporcionada por la guía danesa se adapta a zapatas circulares. En el caso de que las zapatas previstas para los aerogeneradores presenten una geometría distinta (cuadrada, octogonal, etc.) es necesaria la definición de un radio equivalente a partir de la siguiente expresión:

$$R = \sqrt[4]{\frac{16 \cdot a^3 \cdot b}{3 \cdot \pi}}$$

Siendo a y b los semilados de la zapata cuadrada o rectangular.

En el caso de zapatas con formas geométricas distintas, R podría definirse también como el radio inscrito. Por ejemplo, para una zapata de planta octogonal, R quedaría definido como la mitad de la distancia entre lados opuestos.

La rigidez rotacional se obtiene a partir de datos geométricos y del módulo de corte del terreno GDYN.

$$K_{R,DYN} = \frac{8 \cdot G_{DYN} \cdot R^3}{3 \cdot (1 - \nu)} \cdot \beta_1 \cdot \left(1 + 2 \cdot \frac{D}{R}\right)$$

Donde:

- R: radio de la cimentación;
- v: coeficiente de Poisson del suelo;
- D: Empotramiento de la zapata;
- β1: Factor de reducción por el levantamiento de la zapata. Este factor se da en la Referencia [6].
- G_{DYN}: Módulo de corte del suelo para deformaciones pequeñas (10⁻⁵ a 10⁻³).

Existen tres tipos de factores siendo todos ellos mayores o iguales a la unidad. A continuación se indica la formulación del factor por empotramiento D o embebimiento de la fundación, que es el que se ha considerado aplicar en este estudio, considerando de forma conservadora un empotramiento de 1 metro, valor inferior al real por posibles desviaciones durante la ejecución.

El valor mínimo de la rigidez rotacional dinámica se recoge en la referencia [10]:

$K_{R,DYN,MIN} = 80,000 \text{ MNm/rad} = 8.0.10^7 \text{ kNm/rad}$

3.1.2.7. Estimación de deformaciones y asientos.

La estimación de los asientos totales y diferenciales de la cimentación se realiza a través de un modelo de elementos finitos 3D con el software Plaxis3DFoundation ©.

Las propiedades del terreno se caracterizan a través del modelo constitutivo de Mohr-Coulomb, el cual se utiliza para representar todas las capas del suelo así como la cimentación. Para esta última, se utilizan unos parámetros muy altos de resistencia al corte, ya que el propósito del modelo no es definir las tensiones dentro de la propia cimentación, sino dentro del suelo. El momento se aplica como un par de fuerzas de igual valor, pero dirección opuesta.

El detalle de los modelos y los resultados puede consultarse en los Apéndices 3-3 y 4-3.

De acuerdo con las referencias habituales para las cimentaciones de aerogeneradores, los requisitos en cuanto a los asientos diferenciales de la cimentación son los siguientes:

• Una inclinación máxima de 3 mm/m resultante de la carga extrema característica.

3.2. CARACTERÍSTICAS DEL TERRENO

3.2.1. Geología regional y local

La descripción completa y detallada de la geología regional y local de la zona de estudio puede consultarse en la Referencia [1].

3.2.2. Nivel freático

No se ha detectado la presencia de agua en ninguno de los sondeos realizados.

3.2.3. Agresividad del suelo al hormigón

A partir de los datos recogidos en el apartado 5.6 del estudio geológico-geotécnico (Referencia [1]), se puede considerar que la agresividad del suelo no supone un ataque al hormigón, ya que los valores de acidez de Baumann-Gully son para todos los casos igual a 0 y de los 19 resultados de los ensayos en sulfatos, ninguno supone un ataque al hormigón.

3.3. TOPOGRAFIA

La topografía del parque eólico es otro parámetro importante a tener en cuenta. La zona objeto de estudio presenta elementos geomorfológicos claramente diferenciados e influenciados por el tipo de material presente en superficie.

Zonas alomadas, con suaves pendientes desarrolladas sobre el sustrato Cretácico. Muestran una red de drenaje dendrítica encajada, con vaguadas de paredes verticales o de fuertes pendientes y fondo generalmente plano. En esta zona se ha detectado el desarrollo de procesos cársticos.

La parte más baja del predio, cubiertas por suelos cuaternarios de abanico aluvial, constituye una topografía suave e inclinada que desciende hacia el sureste desde el pie de las montañas, con una pendiente del orden del 1.4%; asimismo los lomeríos suaves que se tienen en la esquina suroeste del terreno del proyecto. En la zona de transición con el Cretácico se desarrollan suelos coluviones, todavía con pendientes suaves, que se suavizan al Este

Con respecto a las pendientes, los sitios de los aerogeneradores se consideran seguros ya que en cualquier caso se han ubicado lejos del hombro de algún talud natural pronunciado.

Por todo ello, no se aprecia riesgo de fenómenos de inestabilidad de laderas para la cimentación de los aerogeneradores, ya que su ubicación se encuentra lejos de los hombros de las paredes pronunciadas de los barrancos de los arroyos existentes, donde es común que se produzcan caídos de roca por inestabilidad.

3.4. CARGAS TRANSMITIDAS

3.4.1. Cargas características en base de torre

Las cargas características en base de torre han sido suministradas por GAMESA (ver referencia [10]).

Los casos de carga en base de torre especificados en la Referencia [10] (ver tablas siguientes) se pasan a tensiones en base de cimentación para llevar a cabo las verificaciones geotécnicas. A dichos casos de carga, que se exponen en el apartado 3.4.3., se les ha dado un nombre diferente de los existentes en la Referencia [10]. La correlación entre los nombres se detalla en la Tabla 3-7.

Para cada comprobación de estabilidad o cálculo de estado límite, se ha utilizado el caso de carga indicado en la Tabla 3-14.

Se presenta a continuación el sistema de coordenadas especificado por el cliente, así como los casos de carga facilitados en la Referencia [10].

Lond Coop	Cofety fo stor	Fx	Fy	Fz	Mx	Му	Mz	Мху
Load Case	Salety lactor	kN	kN	kN	kNm	kNm	kNm	Mxy kNm 64288.03 70716.84
dlc23_op_90	1.0	-751.09	-59.83	-2938.23	3058.14	-64215.25	-2176.51	64288.03
dlc23_op_90	1.1 & 0.9	-826.19	-65.81	-3232.15 -2644.41	3363.95	-70636.77	-2394.16	70716.84

Tabla 3-4. Cargas extremas en base de torre (G114-2.1MW T80m IIIA).

	Safatu factor	Fxy	Fz	Мху	Mz
	Salety lactor	kN	kN	kNm	kNm
MAXIMUM	1	416.69	-2979.61	31289.09	1943.50

Tabla 3-5. Cargas cuasipermanentes en base de torre (G114-2.1MW T80m IIIA).

Load Case	Cofoty footor	Fxy	Fz	Мху	Mz
Load Case	Salety lactor	kN	kN	kNm	kNm
dlc21_ovs_hn_s9	1	612.66	-2930.29	49089.60	-3112.70

Tabla 3-6. Cargas características en base de torre (G114-2.1MW T80m IIIA).

Caso de carga (GAMESA)	Caso de carga para las verificaciones geotécnicas (MEXTYPSA)
dlc21_ovs_hn_s9	Normal Extrem (ULS)
dlc21_ovs_hn_s9	Normal Extrem bis (ULS)
dlc21_ovs_hn_s9	Normal Extrem (SLS)
dlc23_op_90	Abnormal 1
dlc23_op_90	Abnormal 1 bis
MAXIMUM	Quasipermanent

Tabla 3-7. Correlación nomenclatura casos de carga GAMESA-MEXTYPSA.

3.4.2. Peso propio de la cimentación y el relleno

Para el cálculo de las tensiones en el plano de cimentación, además de las cargas anteriores, se deben considerar también el peso propio de la cimentación y del relleno, las cuales dependen de la geometría de la cimentación (es decir, los volúmenes) y la unidad de peso de los materiales utilizados.

Para la tipología de cimentación objeto de estudio, cimentación superficial, la geometría de las soluciones estudiadas se da en el apartado 5.1.

El peso unitario del concreto y el relleno tenido en cuenta son, respectivamente:

$$\begin{split} \gamma_c &= 25,0 \ kN \ / \ m^3; \\ \gamma_{bf} &= 16.0 \ kN / m^3. \end{split}$$

Dependiendo de la verificación, el peso de la cimentación y el relleno actúa como una acción favorable o desfavorable. A continuación, se indica cómo se ha considerado para cada verificación geotécnica:

- Capacidad de portante: desfavorable.
- Deslizamiento: favorable.
- Estabilidad frente a vuelco: favorable (comprobación realizada en el documento de cálculo de estructuras.

3.4.3. Casos de carga y efecto de las acciones (zapata desplantada a 2,8 m de profundidad)

Se han contemplado seis casos de carga para las verificaciones geotécnicas. Las combinaciones se dan en la Tabla 3-8 y la Tabla 3-9. M y H representan la carga de viento (momento de vuelco y fuerza horizontal respectivamente), Vc es la carga vertical en la base de la torre, Vf + Vb es la carga vertical compuesta de forma conjunta por el peso de la zapata y el relleno. En la columna "W", se da el factor parcial para el efecto del nivel freático. Dado que el nivel freático no alcanza el nivel de la cimentación, el efecto de la elevación no debe ser tomado en consideración, véase la sección 3.2.2.

		Viento		Cargas muertas		Agua	Factores Parciales					
Caso	Nombre	Тіро	М	н	V _c	V _F +V _B	w	м	н	V _c	V _F +V _B	w
			kN.m	kN	kN	kN	kN	-	-	-	-	-
1	Normal Extrem	ULS	49090	613	2930	13412	0	1,5	1,5	1,5	1,5	1,0
2	Normal Extrem bis	ULS	49090	613	2930	13412	0	1,5	1,5	0,9	0,9	1,0
3	Normal Extrem	SLS	49090	613	2930	13412	0	1,0	1,0	1,0	1,0	1,0
4	Abnormal 1	ULS	64288	751	2938	13412	0	1,1	1,1	1,1	1,1	1,0
5	Abnormal 1 bis	ULS	64288	751	2938	13412	0	1,1	1,1	0,9	0,9	1,0
6	Quasipermanent	SLS	31289	417	2980	13412	0	1,0	1,0	1,0	1,0	1,0

Tabla 3-8. Combinaciones de acciones para verificaciones geotécnicas de acuerdo con la NTC.

			Vient	:0	Cargas	muertas	Agua		Fact	tores Pa	arciales	
Caso	Nombre	Тіро	М	н	V _c	V _F +V _B	W	М	н	V _c	V _F +V _B	W
			kN.m	kN	kN	kN	kN	-	-	-	-	-
1	Normal Extrem	ULS	49090	613	2930	13412	0	1,5	1,5	1,35	1,35	1,0
2	Normal Extrem bis	ULS	49090	613	2930	13412	0	1,5	1,5	1,0	1,0	1,0
3	Normal Extrem	SLS	49090	613	2930	13412	0	1,0	1,0	1,0	1,0	1,0
4	Abnormal 1	ULS	64288	751	2938	13412	0	1,1	1,1	1,1	1,1	1,0
5	Abnormal 1 bis	ULS	64288	751	2938	13412	0	1,1	1,1	0,9	0,9	1,0
6	Quasipermanent	SLS	31289	417	2980	13412	0	1,0	1,0	1,0	1,0	1,0

Tabla 3-9. Combinaciones de acciones para verificaciones geotécnicas de acuerdo con el Eurocódigo7.

Las acciones en base de cimentación así como los efectos de dichas acciones para la geometría considerada se dan en las tablas que se encuentran a continuación (Tabla 3-10 y Tabla 3-11):

Caso	Nombre	Тіро	Md	Hd	Vd			
			kN.m	kN	Vd kN 24513 14708 16342 17985			
1	Normal Extrem	ULS	76511	919	24513			
2	Normal Extrem bis	ULS	76511	919	14708			
3	Normal Extrem	SLS	51007	613	16342			
4	Abnormal 1	ULS	73303	826	17985			
5	Abnormal 1 bis	ULS	73303	826	14715			
6	Quasipermanent	SLS	32593	417	16391			

Tabla 3-10. Acciones en base de cimentación factorizadas de acuerdo con la NTC.

PARQUE EÓLICO COAHUILA (MÉXICO) ESTUDIO GEOTÉCNICO DE DISEÑO DE CIMENTACIONES

Caso	Nombre	Тіро	Md	Hd	Vd
			kN.m	kN	kN
1	Normal Extrem	ULS	76511	919	22062
2	Normal Extrem bis	ULS	76511	919	16342
3	Normal Extrem	SLS	51007	613	16342
4	Abnormal 1	ULS	73303	826	17985
5	Abnormal 1 bis	ULS	73303	826	14715
6	Quasipermanent	SLS	32593	417	16391

Tabla 3-11. Acciones en base de cimentación factorizadas de acuerdo con el Eurocódigo7.

Caso	Nombre	e (m)	Aeff (m²)	Leff (m)	Beff (m)	$\sigma_{\sf media}$	$\sigma_{\rm máximo}$	$\sigma_{\rm mínimo}$	$\sigma_{ m referencia}$
1	Normal Extrem	3,12	123,3	13,5	9,2	108,0	271,3	0,0	198,8
2	Normal Extrem bis	5,20	61,9	11,2	5,5	64,8	333,8	0,0	237,7
3	Normal Extrem	3,12	123,3	13,5	9,2	72,0	180,8	0,0	132,5
4	Abnormal 1	4,08	93,9	12,6	7,5	79,2	270,1	0,0	191,5
5	Abnormal 1 bis	4,98	67,9	11,5	5,9	64,8	303,4	0,0	216,8
6	Quasipermanent	1,99	160,0	14,2	11,2	72,2	139,8	4,6	102,4

Tabla 3-12. Efecto de las acciones en base de cimentación de acuerdo con la NTC.

Caso	Nombre	e (m)	Aeff (m²)	Leff (m)	Beff (m)	$\sigma_{ m media}$	σ _{máximo}	σ_{minimo}	$\sigma_{ m referencia}$
1	Normal Extrem	3,47	112,4	13,2	8,5	97,2	270,7	0,0	196,2
2	Normal Extrem bis	4,68	76,3	11,9	6,4	72,0	303,4	0,0	214,3
3	Normal Extrem	3,12	123,3	13,5	9,2	72,0	180,8	0,0	132,5
4	Abnormal 1	4,08	93,9	12,6	7,5	79,2	270,1	0,0	191,5
5	Abnormal 1 bis	4,98	67,9	11.5	5,9	64,8	303,4	0,0	216,8
6	Quasipermanent	1,99	160,0	14,2	11,2	72,2	139,8	4,6	102,4

Tabla 3-13. Efecto de las acciones en base de cimentación de acuerdo con el Eurocódigo7.

Comprobaciones geotécnicas		Caso de carga
Estado límite último - ULS		
Verificación de la capacidad portante		1, 2, 4 y 5
Verificación a deslizamiento		1, 2, 4 y 5
Estado límite de servicio - SLS		
Verificación de la capacidad portante		3 y 6
Verificación K _{R,DYN,MIN} es mayor que	80 GNm/rad	3уб
Verificación de asientos diferenciales menores a:	3mm/m	3

Los casos de carga anteriores se utilizan en las comprobaciones geotécnicas indicadas en la Tabla 3-14.

Tabla 3-14. Comprobaciones geotécnicas.

3.4.4. Casos de carga y efecto de las acciones (zapata desplantada a 2,0 m de profundidad)

Se han contemplado seis casos de carga para las verificaciones geotécnicas. Las combinaciones se dan en la Tabla 3-8 y la Tabla 3-9. M y H representan la carga de viento (momento de vuelco y fuerza horizontal respectivamente), Vc es la carga vertical en la base de la torre, Vf + Vb es la carga vertical compuesta de forma conjunta por el peso de la zapata y el relleno. En la columna "W", se da el factor parcial para el efecto del nivel freático. Dado que el nivel freático no alcanza el nivel de la cimentación, el efecto de la elevación no debe ser tomado en consideración, véase la sección 3.2.2.

			Vien	to	Cargas	muertas	Agua	Factores Parciales				
Caso	Nombre	Тіро	М	н	V _c	V _F +V _B	W	М	н	V _c	V _F +V _B	w
			kN.m	kN	kN	kN	kN	-	-	-	-	-
1	Normal Extrem	ULS	49090	613	2930	10835	0	1,5	1.5	1,5	1,5	1,0
2	Normal Extrem bis	ULS	49090	613	2930	10835	0	1,5	1,5	0,9	0,9	1,0
3	Normal Extrem	SLS	49090	613	2930	10835	0	1,0	1,0	1,0	1,0	1,0
4	Abnormal 1	ULS	64288	751	2938	10835	0	1,1	1,1	1,1	1,1	1,0
5	Abnormal 1 bis	ULS	64288	751	2938	10835	0	1,1	1,1	0,9	0,9	1,0
6	Quasipermanent	SLS	31289	417	2980	10835	0	1,0	1,0	1,0	1,0	1,0

Tabla 3-15. Combinaciones de acciones para verificaciones geotécnicas de acuerdo con la NTC.

			Viento		Cargas muertas		Agua	Factores Parciales				
Caso	Nombre	Тіро	М	н	V _c	V _F +V _B	W	М	н	V _c	V _F +V _B	W
			kN.m	kN	kN	kN	kN	-	-	-	-	-
1	Normal Extrem	ULS	49090	613	2930	10835	0	1,5	1,5	1,35	1,35	1,0
2	Normal Extrem bis	ULS	49090	613	2930	10835	0	1,5	1,5	1,0	1,0	1,0
3	Normal Extrem	SLS	49090	613	2930	10835	0	1,0	1,0	1,0	1,0	1,0
4	Abnormal 1	ULS	64288	751	2938	10835	0	1,1	1,1	1,1	1,1	1,0

PARQUE EÓLICO COAHUILA (MÉXICO) ESTUDIO GEOTÉCNICO DE DISEÑO DE CIMENTACIONES

Caso	Nombre		Viento		Cargas muertas		Agua	Factores Parciales				
		Тіро	М	н	V _c	V _F +V _B	W	М	н	V _c	V _F +V _B	w
			kN.m	kN	kN	kN	kN	-	-	-	-	-
5	Abnormal 1 bis	ULS	64288	751	2938	10835	0	1,1	1,1	0,9	0,9	1,0
6	Quasipermanent	SLS	31289	417	2980	10835	0	1,0	1,0	1,0	1,0	1,0

Tabla 3-16. Combinaciones de acciones para verificaciones geotécnicas de acuerdo con el Eurocódigo7.

Las acciones en base de cimentación así como los efectos de dichas acciones para la geometría considerada se dan en las tablas que se encuentran a continuación (Tabla 3-10 y Tabla 3-11):

Caso	Nombre	Тіро	Md	Hd	Vd
			kN.m	kN	kN
1	Normal Extrem	ULS	76511	919	20648
2	Normal Extrem bis	ULS	76511	919	12389
3	Normal Extrem	SLS	51007	613	13766
4	Abnormal 1	ULS	73303	826	15151
5	Abnormal 1 bis	ULS	73303	826	12396
6	Quasipermanent	SLS	32593	417	13815

Tabla 3-17. Acciones en base de cimentación factorizadas de acuerdo con la NTC.

Caso	Nombre	Тіро	Md	Hd	Vd
			kN.m	kN	kN
1	Normal Extrem	ULS	76511	919	18584
2	Normal Extrem bis	ULS	76511	919	13766
3	Normal Extrem	SLS	51007	613	13766
4	Abnormal 1	ULS	73303	826	15151
5	Abnormal 1 bis	ULS	73,303	826	12,396
6	Quasipermanent	SLS	32593	417	13815

Tabla 3-18. Acciones en base de cimentación factorizadas de acuerdo con el Eurocódigo7.

Caso	Nombre	e (m)	Aeff (m²)	Leff (m)	Beff (m)	$\sigma_{\rm media}$	$\sigma_{\rm máximo}$	σ_{minimo}	$\sigma_{ m referencia}$
1	Normal Extrem	3,71	105,1	12,9	8,1	91,0	273,5	0,0	196,4
2	Normal Extrem bis	6,18	37,3	9,7	3,9	54,6	478,8	0,0	331,9
3	Normal Extrem	3,71	105,1	12,9	8,1	60,6	182,3	0,0	131,0
4	Abnormal 1	4,84	71,9	11,7	6,1	66,7	297,1	0,0	210,9
5	Abnormal 1 bis	5,91	43,6	10,1	4,3	54,6	398,5	0,0	284,4
6	Quasipermanent	2,36	147,8	14,0	10,5	60,9	129,2	0,0	93.5

Tabla 3-19. Efecto de las acciones en base de cimentación de acuerdo con la NTC.

Caso	Nombre	e (m)	Aeff (m²)	Leff (m)	Beff (m)	$\sigma_{\rm media}$	σ _{máximo}	$\sigma_{\rm mínimo}$	$\sigma_{ m referencia}$
1	Normal Extrem	4,12	92,7	12,5	7,4	81,9	283,1	0,0	200,5
2	Normal Extrem bis	5,56	52,5	10,7	4,9	60,6	357,0	0,0	262,2
3	Normal Extrem	3,71	105,1	12,9	8,1	60,6	182,3	0,0	131,0
4	Abnormal 1	4,84	71,9	11,7	6,1	66,7	297,1	0,0	210,9
5	Abnormal 1 bis	5,91	43,6	10,1	4,3	54,6	398,5	0,0	284,4
6	Quasipermanent	2,36	147,8	14,0	10,5	60,9	129,2	0,0	93,5

Tabla 3-20. Efecto de las acciones en base de cimentación de acuerdo con el Eurocódigo7.

Los casos de carga anteriores se utilizan en las comprobaciones geotécnicas indicadas en la Tabla 3-14.

Comprobaciones geotécnicas		Caso de carga
Estado límite último - ULS		
Verificación de la capacidad portante		1, 2, 4 y 5
Verificación a deslizamiento		1, 2, 4 y 5
Estado límite de servicio - SLS		
Verificación de la capacidad portante		3 y 6
Verificación K _{R,DYN,MIN} es mayor que	80 GNm/rad	3уб
Verificación de asientos diferenciales menores a:	3mm/m	3

Tabla 3-21. Comprobaciones geotécnicas.

Cabe señalar que el hecho de que las tensiones en base de cimentación sean diferentes de las obtenidas en el apartado anterior (3.4.3.) es porque no se ha tenido en cuenta el relleno existente por encima de la cota del terreno natural. Si se considerase, dichas tensiones serían iguales, pues la geometría de la zapata es la misma en ambos casos, al igual que el volumen de relleno sobre el ancho de la zapata hasta 20 cm por debajo de la cota del pedestal.

La razón de no considerar este relleno a efectos geotécnicos para la capacidad portante y el deslizamiento radica, en primer lugar, en una hipótesis llevada a cabo del lado de la seguridad, es decir, prever una posible extracción de dicho material durante la vida útil del aerogenerador. Por otro lado, si no se considera este relleno, la excentricidad de la resultante de las acciones sobre la zapata es mayor, por lo que consecuentemente, en los casos de carga en los que se mayora las cargas el área efectiva de la zapata disminuye y las tensiones aumentan.

4. PARÁMETROS DEL TERRENO Y MODELOS DE SUELO

4.1. INTRODUCCIÓN

Para conocer las condiciones del terreno bajo las estructuras se han consultado todas las prospecciones geotécnicas de la campaña realizada entre Agosto y Octubre de 2014. Para la cual, se realizaron una serie de etapas de trabajo por parte de técnicos especialistas de MEXTYPSA, de MEXLUSA (empresa encargada de la realización de los sondeos), de SOLUCIONES GEOFÍSICAS (empresa encargada de la realización de los trabajos de geofísica), de VORSEVI MÉXICO (empresa encargada de la realización de las PCAs, presiómetros, toma de muestras inalteradas y realización de los ensayos de laboratorio) y del Ingeniero Rubén García Pérez (geólogo especialista encargado del informe geológico y cartografía geológica del parque, catedrático de la UNAM (Universidad Nacional Autónoma de México)).

Con el fin de optimizar el diseño de las cimentaciones, se han agrupado los aerogeneradores en varios modelos específicos de suelo, basados en los datos disponibles y su interpretación con las correlaciones de la literatura geotécnica.

4.2. DATOS DE CAMPO

Se resume a continuación la campaña geotécnica realizada en el Parque Eólico de Coahuila, la cual se encuentra recogida en el documento WE1692-WF-DD-AX-12-GE-EstGeot-Ed1 (Referencia [1]):

- 94 sondeos para las cimentaciones de los aerogeneradores.
- 4 sondeos en la subestación eléctrica
- 4 sondeos para las cimentaciones de las Torres Meteorológicas.
- 1 sondeo en el área de Layout
- 1 sondeo en el área de O&M.
- 23 PCAs en viales.
- 10 perfiles de tomografía sísmica de refracción de 100 m cada uno.
- 30 ensayos MASW a relación de 3 ensayos MASW por perfil de tomografía sísmica de refracción.
- 25 perfiles de tomografía de resistividad eléctrica de 117.5 m.

• 8 Sondeos eléctricos verticales.

Todas las perforaciones se realizaron a rotación con recuperación continua de muestra (barril HQ), con intercalación de ensayos de penetración estándar (SPT).

En nueve posiciones, se tomaron muestras inalteradas con tubo de pared gruesa (Denison).

4.3. CAMPAÑA DE LABORATORIO

En los cuadros adjuntos se resumen los ensayos de laboratorio realizados en los 104 sondeos y las 23 PCAs para estudio de las cimentaciones de los aerogeneradores y demás estructuras, así como para el diseño de las vialidades y aprovechamiento de materiales.

PARQUE EÓLICO COAHUILA (MÉXICO) ESTUDIO GEOTÉCNICO DE DISEÑO DE CIMENTACIONES

Denominación de la Unidad	Normar	Sonc	leos	Medición
	INOTITIOS	MA ⁽¹⁾	MI ⁽²⁾	Realizada
Determinación de la humedad natural	ASTM D-2216	4	19	23
Determinación de las densidad aparente y seca	ASTM C-128	1	11	12
Determinación de las densidades de las partículas	ASTM D-854	18	11	29
Determinación de granulometría por tamizado	ASTM D-422	176	19	195
Ensayo de corte directo, consolidado y con drenaje, CD.	ASTM D-3080	0	2	2
Ensayo de corte directo, no consolidado y sin drenaje, UU.	UNE 103401	0	1	1
Determinación de los Límites de Atterberg	ASTM D-4318	163	19	182
Ensayo de resistencia a compresión simple en suelo	ASTM D-2166	3	1	4
Ensayo edométrico con al menos ocho escalones de carga y tres de descarga y curvas de consolidación-tiempo. El último escalón de carga debe alcanzar al menos los 32 kg/cm².	ASTM D-2435	0	3	3
Hinchamiento libre en celda edométrica	ASTM D-4546	0	4	4
Ensayo de colapso en celda edométrica	ASTM D-5333	0	3	3
Determinación de la presión de hinchamiento	ASTM D-4829	0	3	3
Determinación cuantitativa de carbonatos	UNE103200:1993	19	0	19
Determinación del contenido en yeso	UNE103206:2006	19	0	19
Determinación cuantitativa de sales solubles	UNE103205:2006	19	0	19
Determinación cuantitativa de materia orgánica	UNE103204:1993	19	0	19
Ensayo de compresión simple en suelos	ASTM D-2166	0	1	1
Ensayo de compresión simple en roca	ASTM D-3148	162	0	162
Análisis químico completo del suelo, para determinar su agresividad al hormigón (sulfatos, acidez de Baumann-Gully)	UNE83962:2008	19	0	19

⁽¹⁾ MA=Muestra alterada.

⁽²⁾ MI=Muestra inalterada.

Tabla 4-1. Ensayos de laboratorio realizados en los sondeos.

Denominación de la Unidad	Normas	Medición Realizada
Determinación de la humedad natural	ASTM D-2216	23
Determinación de granulometría por tamizado	ASTM D-422	24
Determinación de los Límites de Atterberg	ASTM D-4318	24
Ensaye proctor modificado (densidad seca máxima y humedad óptima)	ASTM D-1557	24
Determinación del índice de CBR en laboratorio	ASTM D-1883	24
Determinación del contenido en yeso	NLT-115	23
Determinación cuantitativa de sales solubles	NLT-114	23
Determinación cuantitativa de materia orgánica	UNE 103-204	23
Determinación cuantitativa de sulfatos solubles de un suelo	UNE 103-201	23

Tabla 4-2. Ensayos de laboratorio realizados en los PCA.

Las actas de los ensayos de laboratorio, así como las tablas resúmenes de los resultados obtenidos se encuentra recogidas en el documento WE1692-WF-DD-AX-12-GE-EstGeot-Ed1 (Referencia [1]).

4.4. PARÁMETROS DE CÁLCULO

Los cálculos realizados se han basado en los parámetros recomendados por MEXTYPSA en el documento WE1692-F1-AX-001-GE, Estudio Geológico - Geotécnico para el parque eólico de Coahuila (Referencia [1]). Se han distinguido cuatro unidades geotécnicas de apoyo de cimentación de las estructuras: UG1 (depósito de abanico aluvial), UG2 (aluvión), UG3 (lutitas con intercalaciones de calizas) y UG4 (calizas sanas y calizas fracturadas). Para cada una se han detallado los parámetros indicados en la Tabla 4-3 y la Tabla 4-4, atendiendo a los resultados de la campaña geotécnica de campo (sondeos, catas y presiómetros), la campaña de laboratorio y la campaña geofísica.

No se han caracterizado ni parametrizado los suelos más superficiales ya que éstos serán retirados para el apoyo de las cimentaciones de los aerogeneradores.

	Unidad Geotécnica	Y kN∕m3	cu kPa	φ' °	c' kPa	E' MPa
UG1	Aluvión con intercalaciones de conglomerado	18	-	37	0-10	45
UG2	Arcilla limosa	19	190	26	20	30
UG3	Lutita con intercalaciones de caliza	25	350	28	210	100

Unidad Geotécnica	Y	cu	φ'	c'	E'
	kN∕m3	kPa	。	kPa	MPa
Terraplén	19	-	35	10	30

Tabla 4-3. Parámetros geotécnicos recomendados por MEXTYPSA en el documento WE1692-F1-AX-001-GE (Referencia [1])

Roca	c' kPa	Ángulo de rozamiento interno, Φ(°)	Resistencia a la compresión simple de la roca intacta, qu (MPa)	Módulo de Young (MPa)	Coeficiente de Poisson, v	Peso específico (kN/m³)
Caliza	-	34°	35	1290	0.25	27
Caliza fracturada	0	34	-	130	0.30	27

Tabla 4-4. Calidad del macizo rocoso indicada en el documento WE1692-F1-AX-001-GE. (Referencia [1])

4.5. MODELOS DE SUELO

A partir de los sondeos y las diferentes unidades geotécnicas identificadas se han elaborado diferentes modelos de suelo dependiendo de la posición de las capas en profundidad. Los parámetros geotécnicos de cada una de las capas son los que se detallan en el apartado anterior (4.4.).

El nombre dado a cada modelo está relacionado directamente con el orden en profundidad de dichas capas desde el terreno natural hasta la cota de finalización del sondeo llevado a cabo en dicha posición.

Se resume en la siguiente tabla los modelos de suelo adoptados así como los aerogeneradores que están incluidos dentro de cada uno de ellos.

PARQUE EÓLICO DE COAHUILA.(MÉXICO) ESTUDIO GEOTÉCNICO DE DISEÑO DE CIMENTACIONES

UG1	UG2	UG3	UG4 ⁽¹⁾	UG4 ⁽²⁾	UG4 ⁽³⁾	UG1 +UG2
SA03	SA58	SA62	SA19	SA26	SA27	SA13
SA07	SA59	SA63	SA30	SA28	SA29	SA54
SA08	SA75	SA65	SA31	SA33	SA32	SA55
SA09	SA76	SA85	SA41	SA35	SA34	SA68
SA10	SA78	SA86	SA42	SA46	SA47	SA69
SA11			SA43		SA48	SA70
SA12			SA45			SA74
SA14			SA50			
SA15						
SA17						
SA66						
SB01						
SB02						
SB04						
SB06						
		UG2		UG1 +UG2	UG1 +UG2	
UG1 +UG3	UG1 +UG4	UG2 +UG1+UG3	UG2 +UG3	UG1 +UG2 +UG1	UG1 +UG2 +UG3	
UG1 +UG3 SA01	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 <mark>SA57</mark>	UG1 +UG2 +UG1 SA18	UG1 +UG2 +UG3 SA06	
UG1 +UG3 SA01 SA02	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36	
UG1 +UG3 SA01 SA02 SA04	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71(1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53	
UG1 +UG3 SA01 SA02 SA04 SA05	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71(1.7)	UG2 +UG3 SA57 SA60 (2.0) SA79 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71(1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA82	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA81 SA82 SA83 (1.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA23 SA24	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA81 SA82 SA83 (1.4) SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA23 SA24 SA25	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA81 SA82 SA83 (1.4) SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 (SA02 (SA04 (SA05 (SA20 (SA21 (SA22 (SA23 (SA23 (SA24 (SA25 (SA37 ())))))))))))))))))))))))))))))))))))	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA81 SA82 SA83 (1.4) SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA23 SA24 SA24 SA25 SA37 SA38	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA81 SA83 (1.4) SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA23 SA24 SA24 SA25 SA37 SA38 SA31	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA81 SA83 (1.4) SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA23 SA24 SA24 SA25 SA37 SA38 SA37 SA38 SA51 SA52	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA83 (1.4) SA83 (1.4) SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA24 SA24 SA25 SA37 SA38 SA37 SA38 SA51 SA52 SA52 SA56	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA83 (1.4) SA83 (1.4) SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA23 SA24 SA25 SA37 SA38 SA51 SA51 SA52 SA52 SA56 SA61	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA82 SA83 (1.4) SA84 (0.4) C SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA24 SA25 SA37 SA38 SA51 SA51 SA52 SA51 SA52 SA56 SA61 SA64	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA82 SA83 (1.4) SA84 (0.4) SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA23 SA24 SA25 SA37 SA38 SA51 SA51 SA51 SA52 SA56 SA51 SA56 SA61 SA64 SA72	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA82 SA83 (1.4) SA84 (0.4) SA84 (0.4) CANCONSTRUCT SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA23 SA24 SA25 SA37 SA38 SA51 SA38 SA51 SA52 SA56 SA51 SA56 SA51 SA56 SA61 SA64 SA64 SA72 SB03	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA82 SA83 (1.4) SA84 (0.4) SA84 (0.4) CANCONSTRUCT SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA23 SA24 SA25 SA37 SA38 SA51 SA51 SA51 SA52 SA56 SA51 SA56 SA51 SA56 SA51 SA56 SA51 SA56 SA51 SA56 SA51 SA54 SA51 SA54 SA54 SA54 SA54 SA54 SA54 SA54 SA54	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA82 SA83 (1.4) SA84 (0.4) SA84 (0.4) CONTRACT SA84 (0.4) CONTRACT SA84 (0.4) SA84 (0.	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA23 SA24 SA25 SA37 SA38 SA51 SA51 SA51 SA52 SA56 SA51 SA56 SA61 SA61 SA64 SA61 SA64 SA72 SB03 SB05 SB07	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA82 SA83 (1.4) SA84 (0.4) SA84 (0.4) SA84 (0.4) SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67 	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA23 SA24 SA25 SA37 SA38 SA51 SA51 SA51 SA52 SA56 SA61 SA61 SA61 SA64 SA72 SB03 SB05 SB07 SB08	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA82 SA83 (1.4) SA84 (0.4) SA84 (0.4) SA84 (0.4) SA84 (0.4) SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
UG1 +UG3 SA01 SA02 SA04 SA05 SA20 SA21 SA22 SA23 SA23 SA24 SA25 SA37 SA38 SA51 SA51 SA52 SA56 SA61 SA64 SA64 SA72 SB03 SB05 SB07 SB08	UG1 +UG4 SA16	UG2 +UG1+UG3 SA71 (1.7)	UG2 +UG3 SA57 SA60 (2.0) SA77 SA79 (0.4) SA80 (0.2) SA81 SA82 SA83 (1.4) SA84 (0.4) SA84 (0.4)	UG1 +UG2 +UG1 SA18 SA67 	UG1 +UG2 +UG3 SA06 SA36 SA53 SA73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

SAXX (espesor de saneo):

Posiciones pendientes del estudio del posible riesgo de colapsabilidad. En caso de evidencia de riesgo, la solución propuesta sería válida con saneos menores o iguales a 2 metros de espesor.

Tabla 4-5. Agrupación de los modelos del terreno.

En lo relativo a todas las verificaciones geotécnicas, es decir, capacidad portante, deslizamiento, rigidez rotacional y asientos, el modelo de suelo UG2 es el más desfavorable. En consecuencia, para la zapata de 17 m de diámetro desplantada a 2,8 m de profundidad, se puede concluir que haciendo las comprobaciones para este modelo se englobaría a todos los demás en el caso de que los resultados sean favorables.

No obstante, en lo que respecta a la capacidad portante, el deslizamiento y la rigidez rotacional se han realizado las verificaciones geotécnicas para los modelos UG1, UG2, UG3 y UG4⁽¹⁾.

Los asientos se han estimado además de para el modelo UG2 (caso más desfavorable), para el modelo de suelo UG1

Finalmente, para los modelos UG4⁽²⁾ y UG4⁽³⁾ que incluyen todas las posiciones en las que la zapata de 17 m se encuentra apoyada sobre caliza sana con desplantes a 2,8 y 2,0 m de profundidad respectivamente, se ha realizado el cálculo para la capacidad portante en roca. Para estos dos modelos de suelo son válidas las comprobaciones de deslizamiento y rigidez rotacional realizados para el modelo UG4⁽¹⁾.

En el Apéndice 2 se resumen los modelos de suelo considerados para los cálculos. Del mismo modo, también se detallan en dichos apéndices los parámetros utilizados.

5. COMPROBACIONES GEOTÉCNICAS Y RESULTADOS

5.1. INTRODUCCIÓN

En el presente apartado se realizan las comprobaciones geotécnicas para el diseño de las cimentaciones de 89 de los 95 aerogeneradores que comprenden el proyecto. Tal y como se ha comentado en apartados anteriores, la cimentación de las siguientes posiciones quedan fuera del alcance del presente estudio:

- Recomendación de cimentación de la posición B-10 (investigación geotécnica de campo en proceso).
- Recomendación de cimentación de las nuevas ubicaciones de los aerogeneradores A39 y A40 (investigación geotécnica de campo en proceso).
- Recomendación de cimentación en las posiciones donde se ha detectado evidencia de cavidades (posiciones A44, A45 y A49).

Los puntos anteriormente mencionados serán agregados en cuanto se dispongan de los ensayos de campo y de laboratorio propuestos para la ampliación de los trabajos contemplados inicialmente.

5.2. GEOMETRÍA DE LOS AEROGENERADORES

Las características geométricas de las cimentaciones superficiales de los aerogeneradores se esquematizan en las siguientes figuras:

PARQUE EÓLICO DE COAHUILA.(MÉXICO) ESTUDIO GEOTÉCNICO DE DISEÑO DE CIMENTACIONES

Figura 5-1. Diseño de zapata de 17,0 metros de diámetro, desplantada a 2,8 mbgl.

El diseño general de la cimentación superficial es una zapata circular de 17,0 m de diámetro desplantada acota 2,8 mbgl, considerado válido para las posiciones A01-A26, A28, A30, A31, A33, A35-A38, A41-A43, A45, A46, A50-A56, A61-A70, A72, A73, A85, A86, B01-B08. (68 posiciones).

En algunas de las posiciones cimentadas en roca, con el fin de optimizar los costes de excavación, se ha propuesto la misma zapata que en el resto de las posiciones, pero cimentada a 2,0 metros de profundidad en lugar de a 2.8 metros. A partir de los longitudinales realizados por el departamento de Obras lineales (ver documento WE1692-WF-FD-AX-1-OL-VialPlat-Ed1a), 10 de las posiciones cimentadas en roca podrían ir elevadas. A partir de la información de campo disponible, se ha comprobado que 6 de esas posiciones cumplen con las condiciones aceptables de grado de alteración y fracturación para cimentarlas a 2,0 metros de profundidad. Estas posiciones son las A27, A29, A32, A34, A47 y A48.

Cabe destacar que se debe colocar un relleno sobre la zapata y en toda la superficie que se marca en la figura superior y garantizar la durabilidad del relleno durante toda la vida útil de la estructura, ya que se ha tendido en cuenta para cálculos estructurales.

Figura 5-3. Diseño de zapata de 17,0 metros de diámetro, desplantada a 2,8 mbgl. Con mejora del terreno.

El diseño de cimentación de las posiciones A60, A71, A79, A80, A83 y A84 está pendiente del estudio de posible riesgo de colapsabilidad. En el caso de que no haya riesgo, el diseño de cimentación en estas posiciones será válido. En caso contrario, serán necesarias las mejoras del terreno indicadas en la Tabla 5-1.

	Cota de apoyo (mbgl).	Mínima profundidad de tratamiento desde el centro del aerogenerador. (mbgl)	Espesor mínimo del tratamiento. (m)
A81	2,8	3,5	0,7
A60 ^(*)	2,8	4,8	2,0
A71 ^(*)	2,8	4,5	1,7
A79 ^(*)	2,8	3,2	0,4
A80 ^(*)	2,8	3,0	0,2
A83 ^(*)	2,8	4,2	1,4
A84 ^(*)	2,8	3,2	0,4

(*) Tratamiento a aplicar sólo en caso que se exista riego de colapsabilidad.

Tabla 5-1. Recomendaciones de espesor de sustitución bajo cota del terreno natural.

El diseño de cimentación de las posiciones A57, A58, A59, A74, A75, A76, A77, A78, A81 y A82 está pendiente del estudio de posible riesgo de colapsabilidad. En el caso de que no haya riesgo, el diseño de cimentación en estas posiciones será válido. En caso contrario, será necesario tomar las medidas oportunas para minimizar dicho riesgo.

5.3. COMPROBACIÓN DE LA CAPACIDAD PORTANTE

5.3.1. Estructuras cimentadas en suelos y rocas blandas

A partir de la formulación de las normas de la NTC (ver Referencia **[8]**) y el Eurocódigo7 (ver Referencia **[3]**) se ha comprobado la capacidad portante para las posiciones cuya fundación descansa sobre suelos (unidades geotécnicas UG1 y UG2) y rocas blandas o fracturadas (unidades geotécnicas UG3 y UG4⁽¹⁾).

En las siguientes tablas se resumen los resultados obtenidos. Los cálculos detallados se pueden consultar en los Apéndices 3-1-1, 4-1-1, 5-1-1 y 6-1-1.

				Caso d	e carga		
iviodelo de suelo	Tipo de comprobación	1	2	3	4	5	6
UG1	Largo plazo	6%	11%	4%	7%	9%	3%
UG2	Largo plazo	31%	48%	20%	33%	42%	14%
UG2	Corto plazo	44%	55%	30%	44%	50%	22%
UG3	Largo plazo	18%	28%	12%	19%	25%	8%
UG3	Corto plazo	25%	31%	17%	24%	28%	12%
UG4 ⁽¹⁾	Largo plazo	7%	11%	5%	8%	10%	3%
		<100%	<100%	<100%	<100%	<100%	<100%

Tabla 5-2. Factor de aprovechamiento. Comprobación de la capacidad portante a partir de la NTC.

	Tipo do comprohación			Caso d	e carga		
	npo de comprobación	1	2	3	4	5	6
UG1	Largo plazo	7%	9%	4%	7%	9%	3%
UG2	Largo plazo	19%	23%	12%	19%	24%	9%
UG2	Corto plazo	24%	27%	16%	24%	27%	12%
UG3	Largo plazo	3%	4%	2%	3%	4%	2%
UG3	Corto plazo	13%	15%	9%	13%	15%	7%
UG4 ⁽¹⁾	Largo plazo	7%	9%	4%	7%	9%	3%
		<100%	<100%	<100%	<100%	<100%	<100%

Tabla 5-3. Factor de aprovechamiento. Comprobación de la capacidad portante a partir del Eurocódigo7.

Se verifica que en todos los casos se cumplen los requerimientos mínimos de capacidad portante tanto con la normativa Mexicana de la NTC como con el Eurocódigo.

Destacar que, para el modelo de suelo UG1, al tratarse de un terreno en el que se intercalan zonas de conglomerado cementado con material aluvial, se limita el valor de capacidad portante a 2,5 kg/cm² (250 kPa) para prevenir el punzonamiento de las capas más duras sobre las más blandas.

Para el caso de las cimentaciones apoyadas sobre roca blanda (unidad geotécnica UG3), se recomienda considerar una carga admisible de 3,0 kg/cm² (300kPa).

5.3.2. Estructuras cimentadas en roca

En este apartado se ha estimado, en primer lugar, la capacidad portante admisible para las posiciones ubicadas en caliza sana (UG4⁽²⁾ y UG4⁽³⁾ según la Tabla 4-5) según la normativa expuesta en la Referencia [9]. En segundo lugar, se ha estimado la capacidad portante admisible para las mismas posiciones ubicadas en roca utilizando la formulación de la ROM 0.5-05 (Referencia [7]) siguiendo las normas de diseño del Eurocódigo 7 (Referencia [3]).

5.3.2.1. Comprobación a partir de la norma de la CFE

Se ha verificado, que para los diferentes casos de carga considerados de acuerdo con la Tabla 3-10 y la Tabla 3-17, se cumple que la presión transmitida no es en ningún caso superior a la capacidad portante admisible del sustrato calizo. Las fórmulas empleadas tienen implementado un factor de seguridad de 3 según se indica en la normativa empleada.

Los cálculos y resultados obtenidos se detallan en el Apéndice 7-1-1 y se resumen en la Tabla 5-4 adjunta.

Madala da suala	Caso de carga									
	1	2	3	4	5	6				
UG4 ⁽²⁾	6%	7%	4%	5%	6%	3%				
UG4 ⁽³⁾	6%	9%	4%	6%	8%	3%				
	<100%	<100%	<100%	<100%	<100%	<100%				

Tabla 5-4. Factor de aprovechamiento. Comprobación de la capacidad portante en roca a partir de la CFE. Zapatas desplantadas a 2,0 y 2,8 m de profundidad.

5.3.2.2. Comprobación a partir del Eurocódigo

Se ha comprobado la capacidad portante para las posiciones A-26 y A-32, las cuales se localizan en las unidades geotécnicas UG4⁽²⁾ y UG4⁽³⁾ respectivamente, por ser las más desfavorables. Así pues, si se cumplen las comprobaciones para estas posiciones lo harán también para el resto de posiciones cimentadas sobre las unidades geotécnicas UG4⁽²⁾ y UG4⁽³⁾.

Para el cálculo de los parámetros de la formulación indicada por la ROM 0.5-05, se han hecho las siguientes consideraciones para las zapatas desplatadas a 2,8 m de profundidad:

- El grado de meteorización de la roca es W3 (el menor indicado en los registros de sondeos).
- El espaciamiento para las discontinuidades es de 30 cm. Se considera este valor del lado de la seguridad teniendo en cuenta el buen estado de la roca.
- El RQD (%) considerado ha sido de 38%. En la tabla que se encuentra a continuación se muestran los valores de RQD (%) de las posiciones que se localizan en la unidad geotécnica UG4⁽²⁾, extraídos a partir de los registros de sondeo. Así pues, como se puede ver en la Tabla 5-5, el valor de RQD medio según el sondeo SA26 es de 38%, de ahí la razón de tomar el valor de 38% para los cálculos.

LIG4:	ROCA S		DESPLANT	F Δ 2 8 Ι	MBGI	1			ROD	(%)	MEDIA	62	Μάχ	77	MÍN	38	
Posición:	SA26		Posición:	SA28		Posición:	SA33		Posición:	SA35	WEDIN	Posición:	SA44		Posición:	SA46	
De (m)	a (m)	RQD(%)	De (m)	a (m)	RQD(%)	De (m)	a (m)	RQD(%)	De (m)	a (m)	RQD(%)	De (m)	a (m)	RQD(%)	De (m)	a (m)	RQD(%)
0	1	16.5	0	1	94	0	1	60	0	1	17.5	0	1	58	0	1	10
1	2	16.5	1	2	94	1	2	60	1	2	17.5	1	2	58	1	2	10
2	3	42	2	3	43	2	3	75.6	2	3	71.3	2	3	41	2	3	49
3	4	42	3	4	40	3	4	75.6	3	4	71.3	3	4	41	3	4	49
4	5	42	4	5	40	4	5	75.6	4	5	71.3	4	5	0	4	5	72
5	6	20	5	6	93	5	6	72.3	5	6	46.6	5	6	0	5	6	72
6	7	20	6	7	93	6	7	72.3	6	7	46.6	6	7	73.5	6	7	65
7	8	20	7	8	93	7	8	72.3	7	8	46.6	7	8	73.5	7	8	65
8	9	49	8	9	90	8	9	87	8	9	43.5	8	9	84	8	9	87
9	10	49	9	10	90	9	10	87	9	10	43.5	9	10	84	9	10	87
10	11	30	10	11		10	11		10	11	63	10	11		10	11	
11	12	30	11	12		11	12		11	12	63	11	12		11	12	
12	13	30	12	13		12	13		12	13		12	13		12	13	
13	14	61	13	14		13	14		13	14		13	14		13	14	
14	15	61	14	15		14	15		14	15		14	15		14	15	
	MEDIA	38		MEDIA	77		MEDIA	77		MEDIA	55		MEDIA	51		MEDIA	71

Tabla 5-5. RQD en posiciones en roca desplantadas 2,8 mbgl.

Para las zapatas desplantadas a 2,0 m de profundidad las consideraciones han sido las siguientes

- El grado de meteorización de la roca es W3 (el menor indicado en los registros de sondeos).
- El espaciamiento para las discontinuidades es de 30 cm. Se considera este valor del lado de la seguridad teniendo en cuenta el buen estado de la roca.
- El RQD (%) considerado ha sido de 30%. En la tabla que se encuentra a continuación se muestran los valores de RQD (%) de las posiciones que se localizan en la unidad geotécnica UG4⁽³⁾, extraídos a partir de los registros de sondeo. De este modo, como se puede ver en la Tabla 5-6, el valor de RQD medio según el sondeo SA32 es de 31%, de ahí la razón de tomar 31% para los cálculos.

UG4:	ROCA S	ANA CON	DESPLAN	TE A 2 N	1BGL				RQD	(%)	MEDIA	53	MÁX.	72	MÍN.	31	
Posición:	SA27		Posición:	SA29		Posición:	SA32		Posición:	SA34		Posición:	SA47		Posición:	SA48	
De (m)	a (m)		De (m)	a (m)		De (m)	a (m)		De (m)	a (m)		De (m)	a (m)		De (m)	a (m)	
0	1	16.5	0	1	50	0	1	23	0	1	58	0	1	8	0	1	52
1	2	16.5	1	2	50	1	2	23	1	2	58	1	2	8	1	2	52
2	3	40.6	2	3	75	2	3	44	2	3	57	2	3	63	2	3	53
3	4	40.6	3	4	75	3	4	44	3	4	57	3	4	63	3	4	53
4	5	40.6	4	5	29	4	5	44	4	5	55	4	5	34	4	5	76
5	6	32.6	5	6	53	5	6	12	5	6	55	5	6	34	5	6	76
6	7	32.6	6	7	53	6	7	12	6	7	55	6	7	85	6	7	68
7	8	32.6	7	8	40	7	8	31	7	8	55	7	8	85	7	8	68
8	9	30	8	9	40	8	9	31	8	9	55	8	9	68	8	9	89
9	10	30	9	10	40	9	10	31	9	10	55	9	10	68	9	10	89
10	11	77	10	11		10	11		10	11		10	11		10	11	
11	12	72.6	11	12		11	12		11	12		11	12		11	12	
12	13	72.6	12	13		12	13		12	13		12	13		12	13	
13	14	72.6	13	14		13	14		13	14		13	14		13	14	
14	15	21	14	15		14	15		14	15		14	15		14	15	
	MEDIA	46		MEDIA	51		MEDIA	31		MEDIA	56		MEDIA	63		MEDIA	72

Tabla 5-6. RQD en posiciones en roca desplantadas 2mbgl.

Se resumen los resultados obtenidos en la siguiente tabla. Dichos cálculos y resultados se detallan en el Apéndice 7-1-2.

Madala da suala	Caso de carga										
	1	2	3	4	5	6					
UG4 ⁽²⁾	8%	7%	9%	8%	7%	10%					
UG4 ⁽³⁾	8%	6%	8%	7%	6%	9%					
	<100%	<100%	<100%	<100%	<100%	<100%					

Tabla 5-7. Factor de aprovechamiento. Comprobación de la capacidad portante en roca a partir del Eurocódigo7 y la ROM0.5-05. Zapatas desplantadas a 2,0 y 2,8 m de profundidad.

Se ha verificado que para los diferentes casos de carga considerados de acuerdo con la Tabla 3-11 y la Tabla 3-18, se cumple que la presión transmitida no es en ningún caso superior a la capacidad portante admisible del sustrato calizo.

Se remarca que para el caso de las cimentaciones apoyadas sobre roca sana se recomienda considerar una carga admisible no superior a 3,5 kg/cm² (350kPa).

5.4. DESLIZAMIENTO

Como se puede ver en los Apéndices 3-2, 4-2, 5-2 y 6-2 se ha comprobado que las zapatas no deslizan para las posiciones cuya fundación descansa sobre las unidades geotécnicas UG1, UG2, UG3 y UG4 ⁽¹⁾ (caso de roca fracturada), que son todas las que existen en el parque. Para el caso de la UG4 formada por roca sana (UG4 ⁽²⁾ y UG4 ⁽³⁾, no se ha considerado necesaria la comprobación al ser un terreno con propiedades frente al deslizamiento más resistentes que los anteriores.

Se verifica, como se resume de forma simplificada en la tabla adjunta, que en todos los casos se cumplen los requerimientos.

Modelo de suelo		Caso de c	arga (NTC)		Caso de carga (Eurocódigo7)					
Modelo de Suelo	1	2	4	5	1	2	5	5		
UG1	OK	OK	OK	OK	OK	OK	OK	OK		
UG2	OK	OK	OK	OK	OK	OK	OK	OK		
UG3	OK	OK	OK	OK	OK	OK	OK	OK		
UG4 ⁽¹⁾	OK	OK	OK	OK	OK	OK	OK	OK		

Tabla 5-8. Comprobación del deslizamiento a partir de la NTC y el Eurocódigo7.

5.5. RIGIDEZ ROTACIONAL

Con el fin de estimar la rigidez rotacional ($K_{R,DYN}$) se han obtenido los módulos de corte dinámico (G_{DYN}) para cada estrato con su correspondiente ponderación en la zona de influencia de la zapata. El módulo G_{DYN} se ha

estimado a partir de G_0 con una de las relaciones habituales de la bibliografía ($G_{DYN}=0,32\cdot G_0$). Por su parte, G_0 , se ha estimado empleando las formulaciones habituales de a partir de los resultados obtenidos de la geofísica y los ensayos de laboratorio. Se resumen en la siguiente tabla los valores utilizados:

	Unidad Geotécnica	G _o MPa	G _{DYN} MPa
UG1	Aluvión con intercalaciones de conglomerado	116,7	53,3
UG2	Arcilla limosa	111,1	35,6
UG3	Lutita con intercalaciones de caliza	370,4	118,5
UG4	Caliza fracturada	481,5	154,1
UG4	Caliza	4778	1529

Tabla 5-9. Módulos de corte.

A partir de los valores plasmados en la Tabla 5-9, se puede ver que el caso más desfavorable corresponde a las cimentaciones apoyadas sobre el modelo de suelo UG2. Por ello, teniendo en cuenta que la rigidez rotacional dinámica K_{R,DYN} es directamente proporcional a G_{DYN}, se puede concluir que si una posición de aerogenerador cuyo modelo de terreno esté formado íntegramente por la UG2 cumple con la rigidez rotacional dinámica mínima especificada en la Referencia [10], el resto de posiciones también la cumplirá.

Se ha considerado una profundidad de 1 m para el factor de empotramiento (ver apartado 3.1.2.6.).

Las verificaciones de la rigidez rotacional dinámica mínima, además de para la UG2, se ha verificado también para las unidades geotécnicas UG1, UG3 y UG4 (fracturada). Se ha comprobado que en estos casos las comprobaciones son efectivamente más holgadas.

En la Tabla 5-10 se resumen las comprobaciones realizadas. Para ver los cálculos en detalle consultar los Apéndices 3-2, 4-2, 5-2 y 6-2.

Modelo de suelo	Caso d (N	e carga TC)	Caso de carga (Eurocódigo7)				
	3	6	3	6			
UG1	OK	OK	OK	OK			
UG2	OK	OK	OK	OK			
UG3	OK	OK	OK	OK			
UG4 ⁽¹⁾	OK	OK	OK	OK			

Tabla 5-10. Comprobación de la rigidez rotacional a partir de la NTC y el Eurocódigo7.

5.6. ESTIMACIÓN DE ASIENTOS

La estimación de los asientos a partir de un modelo de elementos finitos (FEM) se ha realizado, como se ha indicado en apartados anteriores, para las posiciones con modelos de suelo "más desfavorables", es decir, con el menor módulo de deformación. Por tanto, si el caso más desfavorable cumple con las bases de diseño, el diseño será válido para el resto de casos. El software empleado ha sido Plaxis3DFoundation[©].

Para el parque objeto de estudio, las posiciones más desfavorables son aquellas en las que el terreno bajo la zapata está formado únicamente por la unidad geotécnica UG2, ya que dicha unidad presenta el módulo de deformación más bajo además del menor ángulo de rozamiento. De forma adicional, se han comprobado los asientos para los modelos de terreno formados íntegramente por la unidad geotécnica UG1, tal y como se ha indicado previamente en el apartado 4.5. MODELOS DE SUELO. En ambos casos se ha verificado que el asiento diferencial de la zapata en la cota de apoyo es inferior a 3 mm/m (ver tabla Tabla 5-11).

Modelo	Asiento diferencial
UG1	1,28 mm/m
UG2	1,73 mm/m
	<3 mm/m

Tabla 5-11. Verificación de asientos diferenciales.

Para ver con detalle los modelos realizado en PLAXIS 3D y los resultados obtenidos, consultar los Apéndices 3-3 y 4-3. A modo de ejemplo, en la siguiente figura se muestran los asientos debidos al peso de la turbina y el viento (carga característica extrema en estado límite de servicio (SLS)) bajo una zapata apoyada íntegramente sobre la unidad geotécnica UG2. Los resultados se dan a cota de cimentación.

Figura 5-4. Asientos diferenciales debidos a la carga característica extrema en estado límite de servicio (SLS). Resultados a cota de cimentación.

6. **RECOMENDACIONES**

6.1. MEJORA DEL TERRENO

A partir de los registros de sondeos, se ha comprobado que en la posición A-81 el espesor de tierra vegetal es superior a la profundidad de desplante. Por ello, se recomienda la sustitución del terreno natural entre las profundidades de 2,8 y 3,5 m de profundidad.

La sustitución consiste en eliminar el material con resistencia al corte y parámetros de rigidez que no son lo suficientemente competentes y reemplazarlos por un material que sí sea competente.

Se prevé la reutilización de material procedente de otras excavaciones como material de sustitución. Dicho material deberá ser analizado regularmente para asegurar sus características y calidad. Además, se le deberán aplicar las siguientes restricciones:

- Cantidad de materia orgánica inferior al 1%.
- El material excavado debe ser analizado para asegurar sus características y calidad.
- El contenido en finos no debe ser superior al 5%. En el caso de que dicho contenido sea superior al 5% pero menor al 20%, los finos no deben ser plásticos (índice de plasticidad menor de 6).
- Se extenderá en capas de 20-30 cm de espesos compactadas al 98% de la densidad seca del ensayo proctor modificado.
- Los últimos 0,5 m de la sustitución deben hacerse siempre con el siguiente material:

 Material granular triturado procedente de cantera o machaqueo de roca procedente de la propia obra (Unidad geotécnica UG4). Se extenderá en capas de 20-30 cm de espesor compactadas al 98% de la densidad seca obtenida del ensayo proctor modificado. La densidad final y el contenido de humedad de la capa de sustitución han de ser verificadas por medio de un densímetro nuclear (ASTM D6938-10).

Destacar, que el diseño de cimentación de las posiciones A60, A71, A79, A80, A83 y A84 está pendiente del estudio de posible riesgo de colapsabilidad. En el caso de que no haya riesgo, el diseño de cimentación en estas posiciones será válido. En caso contrario, serán necesarias las mejoras del terreno indicadas en la Tabla 6-1.

	Cota de apoyo (mbgl).	Mínima profundidad de tratamiento desde el centro del aerogenerador. (mbgl)	Espesor mínimo del tratamiento. (m)
A81	2,8	3,5	0,7
A60 ^(*)	2,8	4,8	2,0
A71 ^(*)	2,8	4,5	1,7
A79 ^(*)	2,8	3,2	0,4
A80 ^(*)	2,8	3,0	0,2
A83(*)	2,8	4,2	1,4
A84 ^(*)	2.8	3.2	0.4

^(*) Tratamiento a aplicar sólo en caso que se exista riego de colapsabilidad.

Tabla 6-1. Recomendaciones de espesor de sustitución bajo cota del terreno natural.

6.2. EXCAVACIONES Y PREPARACIÓN DEL FONDO DE EXCAVACIÓN

La excavación hasta el nivel de desplante se hará con pendientes adecuadas según las condiciones del suelo. Las pendientes no deben exceder 1H/1V en suelos y 1H/3V en rocas. Se prestará especial atención a los cortes en suelos granulares y roca alterada por un ingeniero geotécnico o geólogo, y si es necesario, se adoptarán pendientes más horizontales.

No debe existir agua en el fondo de excavación.

La excavación debe quedar abierta el menor tiempo posible para minimizar la contaminación por fenómenos atmosféricos.

El fondo de la excavación será cuidadosamente inspeccionada por un ingeniero geotécnico o un geólogo competente que identifique cualquier zona de material más blando. En caso de detectarse, este material debe ser excavado y reemplazado ya sea por concreto de limpieza o material granular adecuadamente compactado a fin de lograr un plano de desplante homogéneo en el fondo de excavación antes de verter el concreto.

Dado que la investigación geotécnica realizada es puntual, durante la inspección visual del fondo de excavación, el geólogo o geotécnico especialista deberá prestar especial atención a la identificación de posibles zonas karstificadas que pudieran existir bajo el plano de cimentación y que no hayan sido identificadas en el proyecto. En caso de detectarse indicios de su existencia, se deberá realizar una investigación geotécnica más intensa (tomografías eléctricas con separación entre los geófonos menor o igual a un metro y/o sondeos a destroza) para identificar el alcance y magnitud del riesgo. Una vez identificado, se

valorará la solución necesaria para la mitificación de riesgo de karstificación. Igualmente se verificará el diseño de cimentación con la mejora propuesta.

El fondo de la excavación deberá ser limpiado antes de verter el concreto.

El ingeniero geotécnico o geólogo registrará las condiciones de la excavación (tipos de materiales encontrados, condiciones de nivel freático y todo el estado del subsuelo relevante) para verificar si son o no compatibles con los resultados e hipótesis que aparecen en el informe de diseño geotécnico de las cimentaciones.

Se deberá garantizar que la cimentación se desplanta sobre roca o suelo competente.

Los últimos 50 cm de la excavación deberán ser excavados inmediatamente antes de verter el concreto de limpieza. Esta recomendación tiene especial importancia en las posiciones que cimentan directamente sobre la unidad geotécnica UG3 (posiciones A62, A63, A65, A85 y A86), debido a la gran susceptibilidad que tiene dicha unidad geotécnica a la acción del intemperismo, lo que provoca que se fragmente o disgregue en fragmentos menores.

Se debe garantizar la durabilidad del relleno durante toda la vida útil de la estructura, ya que se ha tenido en cuenta para cálculos estructurales.

7. CONCLUSIONES

Se ha realizado el estudio de diseño de cimentación de 94 de los 95 aerogeneradores previstos en la construcción del parque eólico de Coahuila.

A partir de las cargas bajo la torre proporcionada por Gamesa, y el estudio geológico-geotécnico realizado por MEXTYPSA (ver documentoWE1692-WF-DD-AX-12-GE-EstGeot-Ed1) se ha dimensionado la zapata para que cada uno de los aerogeneradores para que cumpla con las verificaciones geotécnicas de deslizamiento, vuelco, estabilidad global, capacidad portante, rigidez rotacional y asientos.

Para cada aerogenerador se han realizado las comprobaciones geotécnicas para una zapata circular de 17 metros de diámetro desplantada a 2,8 bajo el terreno natural. No obstante, en algunas de las posiciones cimentadas en roca, con el fin de optimizar los costes de excavación, se ha propuesto la misma zapata que en el resto de las posiciones, pero cimentada a 2,0 metros de profundidad en lugar de a 2,8 metros. Estas posiciones son las A27, A29, A32, A34, A47 y A48. Cabe destacar que se debe colocar un relleno sobre la zapata y en toda la superficie que se marca en los planos de proyecto y garantizar la durabilidad del relleno durante toda la vida útil de la estructura, ya que se ha tendido en cuenta para cálculos estructurales.

Se ha comparado para cada caso:

- La tensión admisible con las tensiones transmitidas por la estructura al terreno, deducidas de los esfuerzos en la base de la torre proporcionados por Gamesa. La capacidad de carga se comprueba a partir de la formulación de Brinch-Hansen, a largo plazo en terrenos granulares y a corto y largo plazo en terrenos cohesivos. Las comprobaciones se realizan tanto a partir de normativas mexicanas (normativa de la NTC y la CFE), así como a partir del Eurocódigo 7.
- Deslizamiento de la zapata.
- Estimación de asientos en caso de que las tensiones transmitidas al terreno sean inferiores a las admisibles. La estimación de los asientos totales y diferenciales de la cimentación se realiza a través de un modelo de elementos finitos 3D con el software Plaxis3DFoundation ©. Las propiedades del terreno se caracterizan a través del modelo constitutivo de Mohr-Coulomb, el cual se utiliza para representar todas las capas del suelo, así como la cimentación. Para esta

última, se utilizan unos parámetros muy altos de resistencia al corte, ya que el propósito del modelo no es definir las tensiones dentro de la propia cimentación, sino dentro del suelo. El momento se aplica como un par de fuerzas de igual valor, pero dirección opuesta.

Estimación de rigidez rotacional en caso de que las tensiones transmitidas al terreno sean inferiores a las admisibles. Con el fin de estimar la rigidez rotacional (K_{R,DYN}) se han obtenido los módulos de corte dinámico (G _{DYN}) para cada estrato y su correspondiente ponderación en la zona de influencia de la zapata. Calculando el valor de K_{R,DYN} considerando un factor de empotramiento de 1,0 m. Las comprobaciones se realizan tanto a partir de normativas mexicanas (normativa de la NTCy la CFE), así como a partir del Eurocódigo 7

Las recomendaciones finales de cimentación por aerogenerador son las siguientes:

- Zapatas circulares con 17,0 metros de diámetro con cota de cimentación a una profundidad de 2,8 m.
 - o Posiciones verificadas: Aerogeneradores A01-A26, A28, A30, A31, A33, A35-A38, A41-A43, A45, A46, A50-A56, A61-A70, A72, A73, A85, A86 y B01-B08.
 - Posiciones pendientes del estudio de riesgo de colapsabilidad: Aerogeneradores 57, A58, A59, A74, A75, A76, A77, A78, A81 y A82. En caso de que se confirmara la posible colapsabilidad habría que llevar a cabo un estudio de detalle. En caso contrario, las posiciones estarían verificadas.
 - Posiciones pendientes del estudio de riesgo de colapsabilidad: Aerogeneradores A60, A71, A79, A80, A83 y A84. En caso de que se confirmara la posible colapsabilidad habría que llevar a cabo reemplazos de terreno a las profundidades indicadas en la sección (ver tabla Tabla 6-1) En caso contrario, las posiciones estarían verificadas.
- Zapatas circulares con 17,0 metros de diámetro con cota de cimentación a una profundidad de 2,0 m.
 - o Posiciones verificadas: Aerogeneradores A27, A29, A32, A34, A47 y A48.

Cabe destacar, que los puntos mencionados a continuación quedan fuera del alcance del presente estudio:

- Recomendación de cimentación de la posición B-10 (investigación geotécnica de campo en proceso).
- Recomendación de cimentación de las nuevas ubicaciones de los aerogeneradores A39 y A40 (investigación geotécnica de campo en proceso).
- Recomendación de cimentación en las posiciones donde se ha detectado evidencia de cavidades (posiciones A44, A45 y A49).
- Diseño de la cimentación de las torres meteorológicas (responsabilidad del contratista). El terreno de apoyo de éstas estructuras y las propiedades geotécnicas de éstos pueden consultarse en el documento WE1692-WF-DD-AX-12-GE-EstGeot-Ed1 (ver referencia [1])
- Diseño de cimentaciones (en el caso de que existiesen) en las áreas de laydown y Mfacility (responsabilidad del contratista). El tipo de terreno detectado en estas áreas y las propiedades geotécnicas de éstos pueden consultarse en el documento WE1692-WF-DD-AX-12-GE-EstGeot-Ed1 (ver referencia [1])

APÉNDICES

APÉNDICE 1

CASOS DE CARGA Y EFECTOS DE LAS ACCIONES.

APÉNDICE 1.1 ZAPATA SUPERFICIAL. ZAPATA DESPLANTADA A 2,8 MBGL.

APÉNDICE 1.1.1 CÁLCULO A PARTIR DE NTC.

1	Normal Extrem	ULS	49,090	613	2,930	13,412	0	1.5	1.5	1.5	1.5	1.0	
2	Normal Extrem bis	ULS	49,090	613	2,930	13,412	0	1.5	1.5	0.9	0.9	1.0	
3	Normal Extrem	SLS	49,090	613	2,930	13,412	0	1.0	1.0	1.0	1.0	1.0	
4	Abnormal 1	ULS	64,288	751	2,938	13,412	0	1.1	1.1	1.1	1.1	1.0	
5	Abnormal 1 bis	ULS	64,288	751	2,938	13,412	0	1.1	1.1	0.9	0.9	1.0	
6	Quasipermanent	SLS	31,289	417	2,980	13,412	0	1.0	1.0	1.0	1.0	1.0	
7													
8													
9													
10													

FORCES AND STRESSES AT THE BOTTOM OF THE FOUNDATION

			Md	Hd	Vt,d	e	Seff	leff	beff	σmean	σmax	σmin	oref
Case	Name	Туре	kN.m	kN	kN	m	m2	m	m	kPa	kPa	kPa	kPa
1	Normal Extrem	ULS	76,511	919	24,513	3.12	123.3	13.5	9.2	108.0	271.3	0.0	198.8
2	Normal Extrem bis	ULS	76,511	919	14,708	5.20	61.9	11.2	5.5	64.8	333.8	0.0	237.7
3	Normal Extrem	SLS	51,007	613	16,342	3.12	123.3	13.5	9.2	72.0	180.8	0.0	132.5
4	Abnormal 1	ULS	73,303	826	17,985	4.08	93.9	12.6	7.5	79.2	270.1	0.0	191.5
5	Abnormal 1 bis	ULS	73,303	826	14,715	4.98	67.9	11.5	5.9	64.8	303.4	0.0	216.8
6	Quasipermanent	SLS	32,593	417	16,391	1.99	160.0	14.2	11.2	72.2	139.8	4.6	102.4

STANDARDS AND NORMATIVES

- Normativas Técnicas Complementarias sobre Criterios y Acciones para el Diseño Estructural de las Edificaciones (NTC)-GACETA OFICIAL DEL DISTRITO FEDERAL (MÉXICO).
- [2] Guidelines for Design of Wind Turbines. DNV RISØ. 2002.

APÉNDICE 1.1.2 CÁLCULO A PARTIR DE DEL EUROCÓDIGO 7.

Case	Name	Туре	М	н	Vc	V _F +V _B	W	М	н	Vc	V _F +V _B	W	
			kN.m	kN	kN	kN	kN	-	-	-	-	-	
1	Normal Extrem	ULS	49,090	613	2,930	13,412	0	1.5	1.5	1.35	1.35	1.0	
2	Normal Extrem bis	ULS	49,090	613	2,930	13,412	0	1.5	1.5	1.0	1.0	1.0	
3	Normal Extrem	SLS	49,090	613	2,930	13,412	0	1.0	1.0	1.0	1.0	1.0	
4	Abnormal 1	ULS	64,288	751	2,938	13,412	0	1.1	1.1	1.1	1.1	1.0	
5	Abnormal 1 bis	ULS	64,288	751	2,938	13,412	0	1.1	1.1	0.9	0.9	1.0	
6	Quasipermanent	SLS	31,289	417	2,980	13,412	0	1.0	1.0	1.0	1.0	1.0	
7													
8													
9													
10													

FORCES AND STRESSES AT THE BOTTOM OF THE FOUNDATION

			Md	Hd	Vt,d	e	Seff	leff	beff	σmean	σmax	σmin	σref
Case	Name	Туре	kN.m	kN	kN	m	m2	m	m	kPa	kPa	kPa	kPa
1	Normal Extrem	ULS	76,511	919	22,062	3.47	112.4	13.2	8.5	97.2	270.7	0.0	196.2
2	Normal Extrem bis	ULS	76,511	919	16,342	4.68	76.3	11.9	6.4	72.0	303.4	0.0	214.3
3	Normal Extrem	SLS	51,007	613	16,342	3.12	123.3	13.5	9.2	72.0	180.8	0.0	132.5
4	Abnormal 1	ULS	73,303	826	17,985	4.08	93.9	12.6	7.5	79.2	270.1	0.0	191.5
5	Abnormal 1 bis	ULS	73,303	826	14,715	4.98	67.9	11.5	5.9	64.8	303.4	0.0	216.8
6	Quasipermanent	SLS	32,593	417	16,391	1.99	160.0	14.2	11.2	72.2	139.8	4.6	102.4

STANDARDS AND NORMATIVES

[1] GL 2010. Guideline for the Certification of Wind Turbines, Edition 2010.

- [2] EN 1997-1 and its National Annex (Eurocode 7).
- [3] IEC 61400-1

[4] Recommandations sur la conception, le calcul, l'exécution et le contrôle des fondations d'éoliennes. CFMS. 2011.

[5] Guidelines for Design of Wind Turbines. DNV RISØ. 2002.

APÉNDICE 1.2 ZAPATA SUPERFICIAL. ZAPATA DESPLANTADA A 2,0 MBGL.

APÉNDICE 1.2.1 CÁLCULO A PARTIR DE NTC.

2	Normal Extrem bis	ULS	49,090	613	2,930	10,835	0	1.5	1.5	0.9	0.9	1.0	
3	Normal Extrem	SLS	49,090	613	2,930	10,835	0	1.0	1.0	1.0	1.0	1.0	
4	Abnormal 1	ULS	64,288	751	2,938	10,835	0	1.1	1.1	1.1	1.1	1.0	
5	Abnormal 1 bis	ULS	64,288	751	2,938	10,835	0	1.1	1.1	0.9	0.9	1.0	
6	Quasipermanent	SLS	31,289	417	2,980	10,835	0	1.0	1.0	1.0	1.0	1.0	
7													
8													
9													
10													

FORCES AND STRESSES AT THE BOTTOM OF THE FOUNDATION

			Md	Hd	Vt,d	e	Seff	leff	beff	σmean	σmax	σmin	oref
Case	Name	Туре	kN.m	kN	kN	m	m2	m	m	kPa	kPa	kPa	kPa
1	Normal Extrem	ULS	76,511	919	20,648	3.71	105.1	12.9	8.1	91.0	273.5	0.0	196.4
2	Normal Extrem bis	ULS	76,511	919	12,389	6.18	37.3	9.7	3.9	54.6	478.8	0.0	331.9
3	Normal Extrem	SLS	51,007	613	13,766	3.71	105.1	12.9	8.1	60.6	182.3	0.0	131.0
4	Abnormal 1	ULS	73,303	826	15,151	4.84	71.9	11.7	6.1	66.7	297.1	0.0	210.9
5	Abnormal 1 bis	ULS	73,303	826	12,396	5.91	43.6	10.1	4.3	54.6	398.5	0.0	284.4
6	Quasipermanent	SLS	32,593	417	13,815	2.36	147.8	14.0	10.5	60.9	129.2	0.0	93.5

STANDARDS AND NORMATIVES

- Normativas Técnicas Complementarias sobre Criterios y Acciones para el Diseño Estructural de las Edificaciones (NTC)-GACETA OFICIAL DEL DISTRITO FEDERAL (MÉXICO).
- [2] Guidelines for Design of Wind Turbines. DNV RISØ. 2002.
APÉNDICE 1.2.2 CÁLCULO A PARTIR DE DEL EUROCÓDIGO 7.

Case	Name	Туре	М	Н	Vc	V _F +V _B	W	М	Н	Vc	V _F +V _B	W	
			kN.m	kN	kN	kN	kN	-	-	-	-	-	
1	Normal Extrem	ULS	49,090	613	2,930	10,835	0	1.5	1.5	1.35	1.35	1.0	
2	Normal Extrem bis	ULS	49,090	613	2,930	10,835	0	1.5	1.5	1.0	1.0	1.0	
3	Normal Extrem	SLS	49,090	613	2,930	10,835	0	1.0	1.0	1.0	1.0	1.0	
4	Abnormal 1	ULS	64,288	751	2,938	10,835	0	1.1	1.1	1.1	1.1	1.0	
5	Abnormal 1 bis	ULS	64,288	751	2,938	10,835	0	1.1	1.1	0.9	0.9	1.0	
6	Quasipermanent	SLS	31,289	417	2,980	10,835	0	1.0	1.0	1.0	1.0	1.0	
7													
8													
9													
10													

FORCES AND STRESSES AT THE BOTTOM OF THE FOUNDATION

			Md	Hd	Vt,d	e	Seff	leff	beff	σmean	σmax	σmin	σref
Case	Name	Туре	kN.m	kN	kN	m	m2	m	m	kPa	kPa	kPa	kPa
1	Normal Extrem	ULS	76,511	919	18,584	4.12	92.7	12.5	7.4	81.9	283.1	0.0	200.5
2	Normal Extrem bis	ULS	76,511	919	13,766	5.56	52.5	10.7	4.9	60.6	357.0	0.0	262.2
3	Normal Extrem	SLS	51,007	613	13,766	3.71	105.1	12.9	8.1	60.6	182.3	0.0	131.0
4	Abnormal 1	ULS	73,303	826	15,151	4.84	71.9	11.7	6.1	66.7	297.1	0.0	210.9
5	Abnormal 1 bis	ULS	73,303	826	12,396	5.91	43.6	10.1	4.3	54.6	398.5	0.0	284.4
6	Quasipermanent	SLS	32,593	417	13,815	2.36	147.8	14.0	10.5	60.9	129.2	0.0	93.5

STANDARDS AND NORMATIVES

[1] GL 2010. Guideline for the Certification of Wind Turbines, Edition 2010.

- [2] EN 1997-1 and its National Annex (Eurocode 7).
- [3] IEC 61400-1

[4] Recommandations sur la conception, le calcul, l'exécution et le contrôle des fondations d'éoliennes. CFMS. 2011.

[5] Guidelines for Design of Wind Turbines. DNV RISØ. 2002.

APÉNDICE 2

MODELOS DE SUELO CONSIDERADOS.

VE1692 Parque Eólico de Coahuila Wind Turbine Model G114-2.1MW Class Illa Sheet Title GROUND MODELS Wodels UG1, UG2, UG3, UG4 (caliza fracturada) y UG4 (caliza sana) GROUND MODEL DATA - UG1 Opepth (m) Nature Yap \$\phi' \$\mathcal{C}' \$\mathbf{L}' \$\mathcal{G} \mathcal{G} \mathcal{Q} \mathcal{G} \mathcal(\mathcal{G} \mathcal(\mathcal{G} \mathcal{G} \mat	
Wind Turbine Model G114-2. 1MW Class Illa Sheet Title GROUND MODELS Models UG1, UG2, UG3, UG4 (caliza fracturada) y UG4 (caliza sana) GROUND MODEL DATA - UG1 Depth (m) Nature Yap \$\phi' \$\mathcal{C}' \$\mathcal{U}_{G}\$ \$\mathcal_U < \mathcal{U}_{G}\$ \$\mathcal{U}_	
Sheef Iffe YARQUIECTOR GROUND MODELS Wodels UG1, UG2, UG3, UG4 (caliza fracturada) y UG4 (caliza sana) GROUND MODEL DATA - UG1 Depth (m) Nature Yap \$\phi' \$\mathcal{C}' \$\mathcal{C}_u E' \$\mathcal{V}\$ \$\mathcal{G}_0\$ \$\mathcal{G}_0\$ From To - \$\mathcal{K}\mathcal{M}\mathcal{m}^3 \$\mathcal{K}\mathcal{N}\mathcal{m}^2 \$\mathcal{M}\mathcal{P}\mathcal{a}\$ \$\mathcal{M}\mathcal{P}\mathcal{a}\$ \$\mathcal{M}\mathcal{P}\mathcal{a}\$ \$\mathcal{M}\mathcal{P}\mathcal{a}\$ \$\mathcal{M}\mathcal{P}\mathcal{A}\$ \$\mathcal{M}\mathcal{P}\mathcal{A}\$ \$\mathcal{M}\mathcal{P}\mathcal{A}\$ \$\mathcal{M}\mathcal{P}\mathcal{A}\$ \$\mathcal{M}\mathcal{P}\mathcal{M}\mathcal{M}\$ \$\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\$ \$\mathcal{M}\mathcal{P}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\$ \$\mathcal{M}\m	
Depth (m) Nature Yap \$\phi' \$\mathcal{C}' \$\mathcal{L}_u E' \$\mathcal{V}\$ \$\mathcal{G}_0\$ \$\mathcal_0\$ \$\mathcal_0\$ \$\ma	
GROUND MODEL DATA - UG1 Depth (m) Nature Y _{ap} φ' c' cu E' v Go Gdyn From To - kN/m ³ ° kN/m ² MPa - MPa 0.0 - 15.0 G 18.0 37.0 0.0 - 45.0 0.33 166.7 53.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Depth (m) Nature γ_{ap} φ' c' c_u E' v G_0 Gdyn From To - kN/m ³ $^{\circ}$ kN/m ² MPa - MPa MPa 0.0 - 15.0 G 18.0 37.0 0.0 - 45.0 0.33 166.7 53.3	
From To - kN/m³ KN/m² MPa - MPa MPa 0.0 - 15.0 G 18.0 37.0 0.0 - 45.0 0.33 166.7 53.3	
CPOUND MODEL DATA LICO	
Depth (m) Nature Y_{ap} φ' c' c _u E' v G ₀ Gdyn	
From To - kN/m ³ ^o kN/m ² kN/m ² MPa - MPa MPa	
0.0 - 15.0 C 19.0 26.0 20.0 190.0 30.0 0.33 111.1 35.6	
GROUND MODEL DATA - UG3	
Depth (m) Nature V del de El V G Catan	
Event (iii) Nature $\gamma_{ap} = \phi$ C $C_u = V = 0_0$ Guyn	
0.0 - 15.0 C 25.0 28.0 210.0 350.0 100.0 0.33 370.4 118.5	
<u>GROUND MODEL DATA - UG4 (caliza fracturada)</u>	
Depth (m) Nature γ ϕ' c' c _u E' v G ₀ Gdyn	
From To - kN/m ³ ^o kN/m ² kN/m ² MPa - MPa MPa	
0.0 - 15.0 G 27.0 54.0 0.0 - 150.0 0.55 481.5 154.1	
GROUND MODEL DATA - UG4 (caliza sana)	
Depth (m) Nature γ φ' c' c _u E' v G _o Gdyn	
From To - kN/m ³ ^o kN/m ² kN/m ² MPa - MPa MPa	
0.0 - 15.0 G 27.0 34.0 1290.0 0.33 4778.0 1529.0	
With reference to Report : WE1692 WE DD AX 12 GE EttGest Ed1	
With reference to Report. WE1092-WF-DD-AK-12-OL-EStGeot-Lui	

APÉNDICE 3 COMPROBACIONES GEOTÉCNICAS. MODELO DE SUELO UG1.

APÉNDICE 3.1 CAPACIDAD PORTANTE.

APÉNDICE 3.1.1 COMPROBACIÓN A PARTIR DE NTC.

	Name		_				_	_				_	
Project	WE1692	Parque Eóli	ico de Coahu	ila	Ground Mo	del	UG1						
TYPSA Wind Turbine Model	G114-2.1MW Class Illa												
INGENIEROS CONSULTORES Load Document	F12-22-244 v1.0												
Sheet Title	GEOTECHNICAL VERI	ICATIONS											
-	EAKING CAPACITY (GK	OUND NO		D) BASED	<u>UN BRINCF</u>	1-HANSEN	FORMULA	<u>A - DKAINE</u>		<u>UNS</u>			
- Method according to:	Analytical formulation	of NTC											
- Partial factors of safety:					- Short te	erm equatio	n:	$\sum O \cdot F$					
<u> </u>								$\frac{\Delta^2 c}{Aeff}$	$= c_u \cdot N_c \cdot F$	$\overline{F}_r + p_V$			
Effective cohesion (c')			α	1.00									
Bearing resistance (Rv			Fr	0.35									
					- Long ter	rm equatior	1:	$\sum Q \cdot F_c$	$= \begin{bmatrix} \overline{n} & (N) \end{bmatrix}$	$-1)+\frac{\gamma \cdot Be}{2}$	$\frac{ff \cdot N_{\gamma}}{F}$	+ n	
								Aeff		1) 1	2	P_V	
				GROUN									
			case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
			ULS	ULS	SLS	ULS	ULS	SLS					
Bulk unit weight of soil above foundation	n level	γsup	18.0	18.0	18.0	18.0	18.0	18.0					kN/m ³
Bulk unit weight of soil below foundation	n level	γinf	18.0	18.0	18.0	18.0	18.0	18.0					kN/m ³
Cohesion (weighted over 1.5-Beff)	-	c'd	0.0	0.0	0.0	0.0	0.0	0.0					kN/m ²
Angle of friction (weighted over 1.5-Beff)	.)	φ.q	37.0	37.0	37.0	37.0	37.0	37.0					6
ondramed concision (below 1.5 ben)		Cu	0.0	0.0	0.0	0.0	0.0	0.0					KIN/M
				GEOMETR	RICAL DATA								
Depth of the foundation level		D =	2.8	meters bel	low ground le	evel							
Non-effective depth (depth not	taken into account to con	npute the ov	erburden)			0.0	m	_					
			1	0	0	4	5	,	7	0	0	10	
Effective longth		Loff	case I	case Z	Case 3	case 4	case D	case o	case /	case 8	case 9	case 10	m
Effective Width		Beff	9.2	5.5	9.2	7.5	5.9	14.2					m
				LOAD	DATA								
				0			-	,	-	•	<u>^</u>	10	
Design Herizenstelland			case I	case 2	case 3	case 4	case 5	case 6	case /	case 8	case 9	case 10	LAI
Design Horizontal Load		HO	919	919	613	826	826	417					KIN
)	VU So	0.027	14,708	10,342	17,985	14,715	10,391					KIN rad
Inclination of the load along B		OE	2 15	2.59	2 15	2.62	2 21	1.46					o
(1) No inclination considered along	1 L		2.15	3.38	2.15	2.03	3.21	1.40					
		FAG	CTORS OF	THE BEARIN	NG CAPAC	ITY EQUAT	<u>10N</u>						
			case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
		Nq	69.7	66.2	69.7	68.5	67.0	71.5					
		Nc	5.9	5.6	5.9	5.8	5.7	6.1					
		Νγ	64.0	60.7	64.0	62.9	61.5	65.5					
$\pi = \pi + \frac{1}{2} \left(\frac{1}{4\pi} - \frac{1}{2} \right) \left(\frac{1}{4\pi} - \frac{1}{4\pi} \frac{1}{4\pi} - \frac{1}{4\pi} - \frac{1}{4\pi} \right) $	$(1, 1)^{2}$		N 51	. (- D/	Beff	$\left(\right) \left(\right)$	$(a)^2$	N	2(N-1)			
$N_q = e^{\pi i m \tau} \cdot \tan^2 \left(45 + \frac{\tau}{2} \right) \cdot \left(1 + \frac{\tau}{2} \right)$	$\tan \phi \cdot (1 - \tan \delta)$		$N_c = 5.1$	4.(1+0.25	$Beff^{+0}$	$5.25 \cdot \frac{33}{1}$	Leff) (I -	$\tan \delta$	$N_{\gamma} =$	$2 \cdot (N_q + 1)$	$\tan \phi \cdot 0.6$		
			RESULT	S FOR LON	IG TERM AI	VALYSIS							
			-										
			case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Design Bearing Resista	nce	qd	3107.7	2253.5	3107.7	2718.8	2356.9	3611.9					kPa
Design Bearing Pressu	e	σref	198.8	237.7	132.5	191.5	216.8	102.4					kPa
Utilization factor		Λ_{bearing}	6%	11%	4%	7%	9%	3%			- /		-
										$\Lambda_{Bearing} =$	$\frac{R_d}{c} = \sigma_d$	ref	
											$/ 3_d$	$ \boldsymbol{q}_{d} $	
1													

APÉNDICE 3.1.2 CÁLCULO A PARTIR DE DEL EUROCÓDIGO 7.

	D • • •	N°.	Name											
	Project	WE1692	Parque Eólic	co de Coah	uila	Ground Mo	del	UG1						
TYPSA	Wind Turbine Model	G114-2.1/	W Class IIIa											
INGENIEROS CONSULTORES Y ARQUITECTOS	Load Document	F12-22-24	4 v1.0											
	Sheet Title	GEOTECH	INICAL VERIF	ICATIONS										
		BEAR	RING CAPAC	CITY BASE	D ON BRIN	CH-HANSE	N FORMU	LA - DRAIN	ED COND	ITIONS				_
<u>- Meth</u>	od according to: Analyt	ical formulat	ion of Euroco	de 7 with t	the partial fa	ctor method	of EN 1997	/-1		Design App	oroach	2		
	- Partial factors of sat	f <u>ety:</u>					1.00							
	Effecti	ve cohesion	ring resistanc	e (tan φ')		Υ _φ	1.00	R/	$= c' \cdot N$	$\cdot s \cdot i + a$.N.s.i +	$\frac{1}{\sqrt{2}}$	·N .s	.i
	Bearin	g resistance	(C) (Rv)			Yc' Vou	1.40	$/A_{eff}$	$-c n_c$	$S_c \iota_c + q$		2' 0	eff ^Γ γ ^S γ	, ι _γ
		0	()											
					G	ROUND DA	<u>TA</u>							
				-				_		_				
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Bulk unit weigh	t of soil above foundation	n level	งรมุต	18.0	18.0	3LS 18.0	18.0	18.0	3LS 18.0					kN/m ³
Bulk unit weigh	t of soil below foundation	n level	γinf	18.0	18.0	18.0	18.0	18.0	18.0					kN/m ³
Cohesion (weig	hted over 1.5·Beff)		c'd	0.0	0.0	0.0	0.0	0.0	0.0					kN/m ²
Angle of friction	n (weighted over 1.5·Beff)		φ'd	37.0	37.0	37.0	37.0	37.0	37.0					0
					CEO	METRICAL								_
					GEO	METRICAL								
Depth	of the foundation level		D =	2.8	8 meters bel	ow ground le	evel	_						
Non-ef	ffective depth (depth not	taken into ac	count to com	npute the o	verburden)		1.0	m						
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Effectiv	ve length		Leff	13.2	11.9	13.5	12.6	11.5	14.2	cuse /				m
Effectiv	ve Width		Beff	8.5	6.4	9.2	7.5	5.9	11.2					m
						LOAD DAT	<u>A</u>							
				caro 1	caro 2	caro 3	caso 4	caro 5	care b	caro 7	caro 9	care 0	caro 10	
Design	Horizontal Load		Нd	919	919	613	826	826	417	case /	case o	Case 9	case 10	kN
Design	Vertical Load		Vd	22,062	16,342	16,342	17,985	14,715	16,391					kN
Inclinat	tion of the load along $B^{(1)}$		δв	0.042	0.056	0.037	0.046	0.056	0.025					rad
				2.39	3.22	2.15	2.63	3.21	1.46					0
(1) No i	inclination considered along	L												
				FACTOR										
				<u></u>										
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	Bearing factors (N)		Nq	42.9	42.9	42.9	42.9	42.9	42.9					
			Nc	55.6	55.6	55.6	55.6	55.6	55.6					
			Νγ	47.4	47.4	47.4	47.4	47.4	47.4					
	Shape factors (s)		sq	1.39	1.32	1.41	1.36	1.31	1.47					
			SC	1.40	1.33	1.42	1.37	1.31	1.49					
	Inclination factors (i)		sγ	0.74	0.78	0.75	0.70	0.80	0.08					
			ic	0.93	0.91	0.94	0.92	0.91	0.96					
			iγ	0.90	0.86	0.91	0.88	0.86	0.94					
			m	1.61	1.65	1.60	1.63	1.66	1.56					
$N_q = e^{\pi \cdot \tan \varphi'}$	$\tan^2(45 + \frac{\varphi'}{2})$ s = 1+	$\left(\frac{B_{eff}}{B_{eff}}\right)$ send		B_{eff}) L	(Hd)] ^m] [(Hd		2	_ B _{eff} /]
	(72)	$\left(L_{eff}\right)^{sentp}$	$\left s_{\gamma} \right = 1 - 0$	L_{eff}	$ i_q = 1 -$	$-\left \frac{1}{Vd+v}\right $	$A = C' \cdot C'$	$\frac{1}{\cot \alpha'}$	$i_{\varphi} = 1$	$-\frac{1}{Vd+A}$	$C' \cdot \cot \alpha$,	where $m = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$	$\frac{L_{eff}}{B_{eff}}$
$N_c = (N_q -$	(s	$s_a \cdot N_a - 1$		1- <i>i</i> _		() 4) 1	leff C			(ru + rie	ef c cory	<u>」</u>	[17	$/L_{eff}$
$N_{\gamma} = 1.5 \cdot (N_{\gamma})$	$V_q - 1 \cdot \tan \phi' = \frac{s_c}{s_c}$	$\frac{1}{\left(N_q-1\right)}$	$i_c = i_q - \frac{1}{N}$	$\frac{q}{c \cdot \tan \varphi'}$		(2) The inclin	ation of the	foundation be	aca (h tarma)	is not been to	akan into accou	nt (flat hac		
			<u> </u>			RESULTS		jounuution bu	ise (D terrins)	is not been to	iken into uccou	ni (jiui busi	=/	
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	q - term : q ⁽³⁾ \cdot Nq \cdot bq \cdot	sq · iq		1805.5	1673.3	1844.1	1747.9	1651.7	1969.3					kPa
	c - term : c' \cdot Nc \cdot bc \cdot sc	·ic		0.0	0.0	0.0	0.0	0.0	0.0					kPa
	γ - term : 0.5 · γ inf · Bef	$f \cdot N\gamma \cdot b\gamma \cdot s\gamma$	·iγ	2413.6	1839.0	2574.4	2145.5	1713.2	3069.9					kPa
	Bearing resistance	ice	R/A _{eff} ad	4219.1 3013 6	3512.3 2508 8	4418.5 3156 1	3893.4 2781 0	3364.8 2402 5	5039.2 3599 1					kPa kPa
	Design Bearing Pressure	2	σref	196.2	214.3	132.5	191.5	216.8	102.4	_				kPa
	Utilization factor		Λ_{bearing}	7%	9%	4%	7%	9%	3%		R /	σ./		-
	(3) q is the overburden at	foundation lev	el (γsup · D)							Λ	$_{Bearing} = \frac{d}{S_d}$	$= \frac{ref}{q_d}$		

APÉNDICE 3.2 DESLIZAMIENTO Y RIGIDEZ ROTACIONAL.

APÉNDICE 3.2.1 COMPROBACIÓN A PARTIR DE NTC.

	Destant.		N°.	Name										
	Project		WE1692	Parque Eólico	o de Coahuil	a			Ground Me	odel	UG1			
TYPSA	Wind Turbine Ma	odel	G114-2.1M	W Class Illa										
INGENIEROS CONSULTORES	Load Document		F12-22-244	1 v1.0										
T ARGUIECTOS	Sheet Title		GEOTECH	NICAL VERIFIC	CATIONS									
				SUDIN						D				
				<u>oublin</u>	O DEI TTEE					2				
- The ge	eneral equation of	verificat	tion is:			((.	· \)						
					V_d	Min · tan	k∙atan (ta	$\frac{\mathbf{n}\varphi_{ltp,k}}{2}$						
				$H_{i} \leq H_{c}$., _, =			Υ _φ))	φ'_{ltp} : angle	of shear resist	ance of the l	oad tansfer pla	aform material	
Tho co	antribution of the	cohocior	and paceiv		anare,a	takon into	γ_{Rh}		k: coefficien	t of friction.				
- The co	ontribution of the	conesion	i anu passive	e earth resist	ance are no	t taken mto	account.							
	- Partial factors of	of safety:	:							- Natural gro	ound layer:			
	Coefficient	of shear	- ring resistan	ce (tan φ')		γ _Φ	1.0							
	Sliding resi	stance (F	Rh)			Ϋ́Rv	1.1	for ULS			φ'ltp,k	37.0 ^o		
								_			φ'ltp,d	37.0 ^o		
	- Coefficient of f	riction, k	<u>:</u>	1	From 6.5.3	of EN 1997-1	, k varies bet	tween 1 (cast	in situ) and 2/3 (precast concrete)					
			Vd	Ufailura may	ЦА									
Case	Name	Type	kN	kN	kN	- Check								
1	Normal Extrem	UIS	24,513	16,792	919	OK								
2	Normal Extrem b	ULS	14,708	10,075	919	ОК								
							•							
4	Abnormal 1	ULS	17,985	12,320	826	ОК								
5	Abnormal 1 bis	ULS	14,715	10,080	826	ОК								
							-							
					DYN	AMIC ROT	ATIONAL S	<u>STIFFNESS</u>						
												86	$\cdot R^{3}$ (
- The dy	namic rotational	stiffness	is estimated	according to	the followi	ng equatio	n (see refer	ences [4] and	d [5]):		K_{φ}	$DYN = \frac{3}{3} \cdot \frac{U_D}{1}$	$\frac{\gamma N}{N} \cdot \beta_1 \cdot \beta_1$	$+\frac{D}{2.R}$
	- The dynamic ro	tational	stiffness is t	o he verified	for all the lo	ad cases w	here the wi	nd turbine is	nroducing			5 (1	-v) (2 1)
	- Gdyn is the she	ar modu	lus for the r	ange of shear	strain hetw	veen 10 ⁻⁵ an	nd 10 ⁻³		producing.					
	- R is the radius of	of the for	undation = =		8.50 m									
	- β1 is a reductio	n factor	depending of	on the ratio b	etween the	total area o	of the found	lation and th	e compress	ed one (due	to eccentri	city), see [4].		
	- D is the embed	ment of	the foundat	ion, here :		2.8	m							
	- The embedmer	nt D cons	idered in thi	is case :		1.0	m							
- Accore	ding to the load do	ocument	:	K _{φ,dyn,Min}	80.0	GNm/rad								
					80,000	MNm/rad								
- Gdyn i	is weighted over a	depth e	quivalent to	:	Beff									
- Is the	embedment to be	e conside	red?		Yes									
- Verific	cations:						Q1	Cdur		к				
		(200	Namo		Type			MDa	- v	MNm/rad	Check			
		Case	Manie		iyhe	-	-	IVIF'd	-	wiiwiii/Idu				
		3	Normal Ext	rem	SLS	0.18	0.90	53.33	0.33	123.768	ОК			
		5			010	0.10	0.50	20.00	0.00	,.00	- on			
		6	Quasiperm	anent	SLS	0.12	1.00	53.33	0.33	138,021	ОК			

APÉNDICE 3.2.2 CÁLCULO A PARTIR DE DEL EUROCÓDIGO 7.

	Destant		N°.	Name									
	rroject		WE1692	Parque Eólic	o de Coahuil	a	Ground M	odel	UG1				
TYPSA	Wind Turbine M	odel	G114-2.1	MW Class Illa									
INGENIEROS CONSULTORES Y ARQUITECTOS	Load Document		F12-22-24	4 v1.0									
	Sheet Title		GEOTECH	INICAL VERIFI	CATIONS								
				SLIDIN	G BETWEE	N FOUNDA			L GROUN	D			
- The ge	eneral equation of	f verifica	ition is:			((to	n (n'))					
					V_{d}	M_{in} ·tan k	atan –	$\frac{\mathbf{n}\varphi_{ltp,k}}{\varphi_{ltp,k}}$					
				$H_d \leq H_d$			l	γ _φ))	φ'_{ltp} : angle c	f shear resistanc	e of the load	tansfer plaform i	naterial
T h				" ,"			γ_{Rh}		k: coefficier	it of friction.			
- The co	ontribution of the	conesio	n and passi	e earth resist	ance are no	t taken into	account.						
	- Partial factors	of safety	<i>/</i> :							- Natural gro	und laver:		
	Coefficient	t of shea	- iring resista	nce (tan φ')		γ _Φ	1.0						
	Sliding res	istance (Rh)			Ϋ́Rh	1.1	for ULS			φ'ltp,k	37.0 °	
								-		_	φ'ltp,d	37.0 °	
	- Coefficient of f	riction, l	<u>k:</u>	1	From 6.5.3	of EN 1997-1,	k varies bei	ween 1 (cast	in situ) and 2	2/3 (precast co	ncrete)		
				Life									
Case	Namo	Type	Vd	HTailure,max	Hd kN	Check							
1	Normal Extrem		22.062	15.113	919	OK							
2	Normal Extrem I	ULS	16,342	11,195	919	ОК							
4	Abnormal 1	ULS	17,985	12,320	826	ОК							
5	Abnormal 1 bis	ULS	14,715	10,080	826	ОК							
					DYN	AMIC ROTA	ATIONAL	<u>STIFFNESS</u>					
Tho di	unamic rotational	ctiffnoc	ic octimate	d according to	a tha fallowi	ing aquation	leas rafar	ancoc [4] and	4 [5]).			8 G	$V \cdot R^3 = (D)$
- The uy		sumes	s is estimate			ing equation	(see relei	ences [4] and	u [5]).		K_{φ}	$_{DYN} = \frac{1}{3} \cdot \frac{DT}{(1-3)^2}$	$\frac{\gamma}{-\nu}$ $\beta_1 \left(1 + \frac{1}{2 \cdot R} \right)$
	- The dynamic ro	otational	l stiffness is	to be verified	for all the lo	oad cases wh	nere the wi	nd turbine is	producing			(
	- Gdyn is the she	ar modu	ulus for the	range of shea	r strain betw	veen 10 ⁻⁵ an	d 10 ⁻³ .						
	- R is the radius	of the fo	undation =	= >	8.50 m								
	- β1 is a reductio	on factor	depending	on the ratio b	etween the	total area o	f the found	lation and th	e compres	sed one (due	to eccentrio	city), see [4].	
	- D is the embed	ment of	the founda	tion, here :		2.8	m						
	- The embedme	nt D con	sidered in t	nis case :		1.0	m						
- Accore	ding to the load d	ocumen	t:	$K_{\varphi,dyn,Min}$	80.0	GNm/rad							
					80,000) MNm/rad							
_ .													
- Gdyn i	is weighted over a	depth e	equivalent t	0:	Beff								
- Is the	empedment to be	e conside	erea?		Yes								
Vorifi	rations:												
- verific						e/M	ß1	Gdvn	v	K.			
		Case	Name		Type	-	-	MPa	-	MNm/rad	Check		
					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					,			
		3	Normal Ex	trem	SLS	0.18	0.90	53.33	0.33	123,768	ОК		
		6	Quasiperr	nanent	SLS	0.12	1.00	53.33	0.33	138,021	ОК		

APÉNDICE 3.3 ESTIMACIÓN DE ASIENTOS.

PARQUE EÓLICO DE COAHUILA (MÉXICO)

ANÁLISIS DE DEFORMACIONES Y DESPLAZAMIENTOS

TABLA DE CONTENIDOS

1	ANÁLISIS DE DEFORMACIONES Y DESPLAZAMIENTOS	. 2
1.1	OBJETIVO	. 2
1.2	CARGAS	. 2
1.3	MODELO	. 2
1.4	RESULTADOS	. 4

ANÁLISIS DE DEFORMACIONES Y DESPLAZAMIENTOS

1 ANÁLISIS DE DEFORMACIONES Y DESPLAZAMIENTOS

1.1 OBJETIVO

El objetivo de este apéndice es llevar a cabo un análisis de las deformaciones y desplazamientos del terreno debidos a la instalación de aerogeneradores en el Parque Eólico de Coahuila.

1.2 CARGAS

Las cargas empleadas para la verificación del estado límite de servicio (SLS) son las que se encuentran en la Tabla 5 del documento FOUNDATION LOADS FOR G114_2.1MW T80 & T93 FOR EOLICA DE COAHUILA WIND FARM (F12-22-144 v1.0). Dichas cargas no han sido factorizadas, tal y como se especifica en el citado documento.

Se resumen las cargas utilizadas en la siguiente tabla:

Caso do carga	Factor de seguridad	Fuerza Vertical	Momento	Fuerza Horizontal
Caso de Carga	-	[kN]	[kN.m]	[kN]
dlc21_ovs_hn_s9	1	2930,29	49089,60	3112,70

Tabla 1-1. Caso de carga para verificaciones geotécnicas.

El momento se aplica como un par de fuerzas de igual valor, pero dirección opuesta.

1.3 MODELO

El análisis de los asientos diferenciales durante la vida útil de la estructura se ha realizado para el modelo de terreno constituido por la unidad geotécnica UG1.

Para el análisis en 3D se ha empleado el software de elementos finitos Plaxis3DFoundation[©].

Se han aplicado las condiciones de contorno típicas de los cálculos de modelos de elementos finitos, restringiendo los desplazamientos horizontales en los contornos verticales, y los desplazamientos verticales en la base del modelo.

Las propiedades del terreno se caracterizan a través del modelo constitutivo de Mohr-Coulomb, el cual se utiliza para representar todas las capas del suelo así como la cimentación. Para esta última, se utilizan unos parámetros muy altos de resistencia al corte, ya que el propósito del modelo no es definir las tensiones dentro de la propia cimentación, sino dentro del suelo.

Las propiedades de la UG1 utilizadas en el cálculo se detallan en la tabla siguiente:

	Unidad Geotécnica	Y kN∕m³	cu kPa	φ' °	c' kPa	E' MPa
UG1	Aluvión con intercalaciones de conglomerado	18	-	37	0	45

Tabla 1-2. Parámetros geotécnicos recomendados para la UG1.

El modelo elaborado para analizar los asientos de la estructura, junto con su malla, se muestra en la Figura 1.1. Dicho modelo tiene una profundidad de 40 m y un área de 75x75 m².

ANÁLISIS DE DEFORMACIONES Y DESPLAZAMIENTOS

Figura 1.1. Modelo de elementos finites 3D. Visión general de la malla.

Para poder ver en detalle la geometría del modelo, en la Figura 1.2 se incluye un corte de la sección de la zapata.

1.4 RESULTADOS

De acuerdo con las referencias habituales para las cimentaciones de aerogeneradores, los requisitos en cuanto a los asientos diferenciales de la cimentación son los siguientes:

• Un asiento diferencial máximo de 3 mm/m resultante de la carga extrema característica.

Se muestra a continuación los asientos debidos al peso de la turbina (en parada). Los resultados se dan a cota de cimentación.

En la siguiente figura se muestran los asientos debidos al peso de la turbina y el viento (carga característica extrema en estado límite de servicio (SLS)). Los resultados se dan a cota de cimentación.

cota de cimentación.

A partir de los cálculos realizados, se obtiene un asiento diferencial entre los extremos de la zapata de 1,28 mm/m, menor al asiento diferencial máximo admisible de 3mm/m.

APÉNDICE 4 COMPROBACIONES GEOTÉCNICAS. MODELO DE SUELO UG2.

APÉNDICE 4.1 CAPACIDAD PORTANTE.

APÉNDICE 4.1.1 COMPROBACIÓN A PARTIR DE NTC.

	N 1 1	N°.	Name												
	Project	WE1692	Parque	e Eólico	o de Coahui	la	Ground Mc	del	UG2						
TYPSA	Wind Turbine Model	G114-2.1MW Class Illa													
INGENIERO CONSULTORE	S Load Document	F12-22-244 v1.0													
ANGOILECIO	Sheet Title	GEOTECHNICAL VERIF	ICATIO	NS											
	RE			NOT	IMPROVE		ON BRINCH		FORMULA			ONS			
<u>- Me</u>	ethod according to:	Analytical formulation	of NTC												
- <u>F</u>	Partial factors of safety:						- Short te	erm equatior	1:	$\sum Q \cdot F_c$	$= c_u \cdot N_c \cdot F$	$\overline{P}_r + p_V$			
	Effective cohesion (c')				α	1.00				Aeff					
	Bearing resistance (Rv)				F _r	0.35									
							- Long te	rm equation	:	$\sum Q \cdot F_c$	$\int \frac{1}{2\pi} dN$	1) $\gamma \cdot Be$	$ff \cdot N_{\gamma}$		
										Aeff	$= \begin{bmatrix} p_V \cdot (N_q) \end{bmatrix}$	-1)+	2	$+ p_V$	
						GPOUN									
						GROON									
					case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
					ULS	ULS	SLS	ULS	ULS	SLS					
Bulk unit wei	ight of soil above foundation	level	γsup		19.0	19.0	19.0	19.0	19.0	19.0					kN/m ³
Bulk unit wei	ight of soil below foundation	level	γinf		19.0	19.0	19.0	19.0	19.0	19.0					kN/m ³
Cohesion (we	eighted over 1.5·Bett) tion (weighted over 1 5·Beff)		ዋ,ዋ C.q		20.0	20.0	20.0	20.0	20.0	20.0					kN/m² ٥
Undrained co	ohesion (below 1.5-Beff)		φu C _u		190.0	190.0	190.0	190.0	190.0	190.0					kN/m ²
			-												,
						GEOMETR	ICAL DATA	1							
Den	th of the foundation level			D =	2.8	meters bel	ow ground le	evel							
Non	effective depth (depth not	taken into account to con	npute th	e over	rburden)	inecció ben	en ground n	0.0	m						
					case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Effe	ctive length		Leff		13.5	11.2	13.5	12.6	11.5	14.2					m
ЕПЕ	ctive width		ветт		9.2	5.5	9.2	7.5	5.9	11.2					m
						LOAD	DATA								
					case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Desi	ign Horizontal Load			Hd	919	919	613	826	826	417					kN
Desi	ign vertical Load			va مە	24,513	14,708	16,342	17,985	14,715	16,391					KIN rad
Incli	mation of the load along B			ов	2 15	3 58	2 15	2 63	3 21	1 46					0
(1) N	lo inclination considered along	L													
				FAC	TORS OF T	HE BEARIN	IG CAPAC	ITY EQUATI	<u>ON</u>						
					case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
			Nq		16.3	15.5	16.3	16.1	15.7	16.8					
			INC NV		5.9 10 1	5.0 9.7	5.9 10 1	5.8	5.7	0.1 10 /					
			ινγ			5.7	10.1	10.0	5.0	10.4					
$N_q = e^{\pi r}$	$\tan \phi \cdot \tan^2 \left(45 + \frac{\phi}{2} \right) \cdot \left(1 + ta \right)$	$(1 - \tan \delta)^2$			$N_c = 5.1$	$4 \cdot (1 + 0.25)$	$D_{Reff} + 0$	$0.25 \cdot \frac{Beff}{I}$	(1-	$(\tan \delta)^2$	$N_{\gamma} =$	$2 \cdot (N_q + 1)$	$\tan \phi \cdot 0.6$		
	(, 2)					(/ 2	c)))						
					RESULTS	FOR LON	<u>G IERM AI</u>	VALYSIS							
					case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	Design Bearing Resistan	ce	ad		647.8	500.1	647.8	581.2	518.6	734.3	cube /	cuse o	cuse /	cube ro	kPa
	Design Bearing Pressure	2	σref		198.8	237.7	132.5	191.5	216.8	102.4					kPa
	Utilization factor		Λ_{bearing}		31%	48%	20%	33%	42%	14%					-
											-	$\Lambda_{Rayring} =$	$\frac{R_d}{c} = \sigma_d$	ref	
												Scaring	/ 3 _d	$/ q_d$	
					RESULTS	FOR SHO	rt term a	NALYSIS							
					coro 1	coro 2	coro 3	core A	core 5	core h	cose 7	core 9	care 0	core 10	
	Design Rearing Resiston	ce	ad		447 92	428.65	447 92	439 64	432 79	462 04	cuse /	Cuse o	Cuse 7	cuse 10	kPa
	Design bearing pressure	2	σref		198.8	237.7	132.5	191.5	216.8	102.4					kPa
	Utilization factor		Λ_{bearing}		44%	55%	30%	44%	50%	22%					-
												$\Lambda_{Bearing} =$	$\frac{R_d}{c} = \sigma_d$	ref	
													/ 3 _d	$/ \boldsymbol{q}_d$	

APÉNDICE 4.1.2 CÁLCULO A PARTIR DE DEL EUROCÓDIGO 7.

	Project	N°.	Name											
		WE1692	Parque Eólic	o de Coahu	vila	Ground Mc	odel	UG2						
TYPSA	Wind Turbine Mod	el G114-2.1M	W Class IIIa											
CONSULTORES Y ARQUITECTOS	Load Document	F12-22-244	4 v1.0											
	Sheet Title	GEOTECH	NICAL VERIFI	CATIONS										
		BEARI	ING CAPAC	CITY BASE	D ON BRIN	CH-HANSE	EN FORMU	LA - DRAIN	ED COND	ITIONS				
<u>- Meth</u>	nod according to: A	nalytical formulation	on of Euroco	de 7 with 1	the partial fa	ctor methoo	d of EN 1997	-1		Design App	<u>oroach</u>	2		
	- Partial factors	of safety:												
	C	oefficient of sheari	ng resistanc	e (tan φ')		γ_{Φ}	1.00	R/	-a'N	. ;	Nai	1	Ma	;
	E	mective conesion (C') DV)			Yc'	1.00	A_{eff}	$= c \cdot n_c$	$\cdot s_c \cdot i_c + q$	$\cdot \mathbf{N}_q \cdot \mathbf{S}_q \cdot \mathbf{I}_q$	$+\frac{1}{2}$	$_{eff} \cdot N_{\gamma} \cdot S_{\gamma}$	\mathcal{H}_{γ}
	B	earing resistance (i	nv)			Ϋ́Rv	1.40							
					G	ROUND D	ATA							
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
				ULS	ULS	SLS	ULS	ULS	SLS					
Bulk unit weigh	ht of soil above found	lation level	γsup	19.0	19.0	19.0	19.0	19.0	19.0					kN/m ³
Bulk unit weigh	ht of soil below found	lation level	γinf	19.0	19.0	19.0	19.0	19.0	19.0					kN/m [°]
Cohesion (weig	ghted over 1.5.Beff)	Poff)	c'd	20.0	20.0	20.0	20.0	20.0	20.0					kN/m² ₀
Angle of Inctio	in (weighted over 1.5	·ben)	ψu	20.0	20.0	20.0	20.0	20.0	20.0					
					GEO	METRICAL	DATA							
Depth	of the foundation le	vel	D =	2.8	8 meters belo	ow ground l	evel							
Non-e	effective depth (depth	n not taken into acc	count to com	pute the o	verburden)		1.0	m	-					
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Effecti	ive length		Leff	13.2	11.9	13.5	12.6	11.5	14.2					m
Effecti	ive Width		Beff	8.5	6.4	9.2	7.5	5.9	11.2					m
						LOAD DAT	<u>A</u>							
					•			-		-	•	•		
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Design	n Horizontal Load		Hd	919	919	613 16 24 2	826	826	41/					KN KN
Inclina	ation of the load alon	е В ⁽¹⁾	να δΒ	0.042	0.056	0.037	0.046	0.056	0.025					rad
incind		50	00	2.39	3.22	2.15	2.63	3.21	1.46					0
(1) No i	inclination considered a	long L												
				FACTOR	<u>RS OF THE B</u>	EARING C	APACITY E	QUATION						
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	Bearing factors (N)	Nq	11.9	11.9	11.9	11.9	11.9	11.9					
			Nc	22.3	22.3	22.3	22.3	22.3	22.3					
			Νγ	7.9	7.9	7.9	7.9	7.9	7.9					
	Shape factors (s)		sq	1.28	1.24	1.30	1.26	1.22	1.35					
			SC	1.31	1.26	1.33	1.28	1.24	1.38					
	Inclination factors	(i)	sγ	0.74	0.78	0.75	0.76	0.80	0.08					
		(1)	ic	0.93	0.92	0.95	0.94	0.92	0.97					
			iγ	0.91	0.88	0.93	0.90	0.88	0.95					
			m	1.61	1.65	1.60	1.63	1.66	1.56					
$N = e^{\pi \cdot \tan \phi'}$	$tan^2 (45 \pm \varphi' /)$	$\left(B_{\text{eff}}\right)$		(B ~	ЛГ	($\backslash]^m$	Г	(\mathbb{Z}^{m+1}	Г	P /]
$IV_q = c$	$\frac{1}{\left(\frac{43+2}{2}\right)} s_q$	$=1+\left(\frac{e_{g}}{L_{eff}}\right)\cdot sen\phi'$	$s_{\gamma} = 1 - 0$	$0.4 \cdot \left \frac{-e_{gg}}{L} \right $	$ i_a = 1 - 1 $	-	Hd		$ i_{\alpha} = 1-$	_	Hd	,	where $m = \begin{vmatrix} 2 \\ - \end{vmatrix}$	$\frac{D_{eff}}{L_{eff}}$
$N_c = (N_q -$	-1) $\cdot \cot \varphi'$	(- N 1)				(Vd + d)	$A_{eff} \cdot C'$	$\cot \varphi'$		$\left(Vd + A_{e}\right)$	$eff \cdot C' \cdot \cot$	$\left[\varphi' \right]$	1+	$\frac{B_{eff}}{L_{eff}}$
$N = 1.5 \cdot (N)$	$\frac{1}{N-1}\cdot\tan\phi'$ s_c	$=\frac{(s_q \cdot N_q - 1)}{(N_q - 1)}$	$i_c = i_q - \frac{1}{N}$	$\frac{1-i_q}{1-i_q}$										
$10_{\gamma} = 1.5$ (1		$(N_q - 1)$	IN	$c \cdot \tan \varphi$		(2) The inclin	nation of the J	foundation ba	se (b terms) i	s not been ta	ken into acco	ount (flat base)		
						RESULTS								
	(3)			case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	q - term : q ⁽³⁾ · Nq	· bq · sq · iq		492.1	462.6	502.5	479.7	457.9	530.1					kPa
	c - term : c' · Nc · b	Doff No. 1	i	548.4	512.9	560.9	533.5	507.2	594.1					кга кр-
	γ - term : 0.5 · γinf	· ветт · Ny · by · sy ·	· ιγ Ρ/Λ	435.4 1475 0	333.6	466.4	388.1	310.8	553.5 1677 7					кРа кРа
	Design Bearing Re	sistance	rt/A _{eff} qd	1054.2	935.1	1092.7	1000.9	911.3	1198.4					кга kPa
	Design Bearing Pre	essure	oref	196.2	214.3	132.5	191.5	216.8	102.4					kPa
	Utilization factor		Λ_{bearing}	19%	23%	12%	19%	24%	9%		R	σ./		-
	(3) q is the overburd	en at foundation level	I(γsup · D)							Λ	$Bearing = \frac{d}{2}$	$S_d = \frac{r_{ef}}{q_d}$		

	Project	<u>№.</u>	Name					1						
		WE1692	Parque Eól	lico de Coahu	ila	Ground M	odel	UG2						
	Wind Turbine Model	G114-2.1MW	/ Class Illa											
CONSULTORE Y ARQUITECTO	Load Document	F12-22-244 v	1.0											
	Sheet Title	GEOTECHNI	Cal verific	aiions										
		BEARING C	CAPACITY	BASED ON	BRINCH-H	-		- UNDRA	INED CO	NDITIONS				
											-			
	Method according to:	Analytical for	mulation of	f Eurocode 7	with the p	artial facto	r method c	of EN 1997-	1		Design App	<u>oroach</u>	2	
	Undrained strenght		Y	1.0							1			
	Bearing resistance (Pv)		ι _{cu} Υ	1.0		$ R_{\Lambda} $	$=(\pi$	$(\tau + 2)$	$c_{\mu} \cdot s_{c}$	$i_{a} + q$				
	bearing resistance (KV)		Rv	1.4		$ / A_{d}$	eff)	u c	ιı				
						<u>.</u>					-			
					GRO	UND DAT	<u>A</u>							
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Dulli uniterra		Nam laval		ULS	ULS	SLS	ULS	ULS	SLS					
Bulk unit we	eight of the soil above foundat	tion level	γsup	19.0	19.0	19.0	19.0	19.0	19.0					kN/m ³
onuraineu c	Collesion (below 1.3 Bell)		C _u	190.0	190.0	190.0	190.0	190.0	190.0					KN/m
					GEOM	TRICAL D	ATA							
Dor	ath of the foundation lovel		D	2.0	motors bo		laval							
Dep	pth of the foundation level		D	2.8	meters be	low ground	lievei							
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Effe	ective length		Leff	13.2	11.9	13.5	12.6	11.5	14.2					m
Effe	ective Width		Beff	8.5	6.4	9.2	7.5	5.9	11.2					m
					<u>10</u>									
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Des	sign Horizontal Load		Hd	919.0	919.0	612.7	826.2	826.2	416.7					kN
			<u>L</u>					NUMICIA						
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	Shape factors (s)		SC	1.13	1.11	1.14	1.12	1.10	1.16					
	Inclination factors (i)		ic	0.99	0.98	0.99	0.99	0.98	1.00					
					(-					<u></u>		7		
			S	=1+0.2	B_{eff}		$i = \frac{1}{2}$	1 + 1	<u>H</u>	with	$H < A' \cdot c$			
			^c	1 01		-eff)	^r c 2	(γ)	$A' \cdot c_u$)		u		
						(2) The incli	nation of th	e foundatior	n base (b teri	ms) is not be	een taken into	account (1	flat base)	
					R	ESULTS		.,		.,				
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	Bearing Resistance		R/A_{eff}	1144.79	1117.82	1155.72	1133.19	1112.39	1180.16					kPa
	Design Bearing Resistan	ce	qd	817.71	798.44	825.51	809.42	794.56	842.97					kPa
	Design bearing pressure		σref	196.2	214.3	132.5	191.5	216.8	102.4					kPa
	Utilization factor		Λ_{bearing}	24%	27%	16%	24%	27%	12%					-
				Γ		R_{1}/q	σ./							
				-	$\Lambda_{Bearing} =$	$a'/S_d^{=}$	$\left q_{d} \right $							
				L										
1														

APÉNDICE 4.2 DESLIZAMIENTO Y RIGIDEZ ROTACIONAL.

APÉNDICE 4.2.1 COMPROBACIÓN A PARTIR DE NTC.

	Burlant		N°.	Name									
	Project		WE1692	Parque Eólico	o de Coahuile	a			Ground Me	odel	UG2		
TYPSA	Wind Turbine M	odel	G114-2.1M	W Class Illa									
	Load Document		F12-22-244	1 v1.0									
Y ARQUITECTOS	Sheet Title		GEOTECH	NICAL VERIFIC	CATIONS								
				<u>SLIDIN</u>	<u>g betweei</u>	N FOUND	ATION AN	ID NATURA	<u>L GROUN</u>	<u>D</u>			
- The g	eneral equation of	f verificat	tion is:										
- The B		i vermea				((ta	$n \varphi_{ltn,k}$					
					V_d	Min tan	t•atan —	$\frac{\gamma_{\alpha}}{\gamma_{\alpha}}$	φ'_{ltn} : angle	of shear resist	ance of the lo	oad tansfer plafor	m material
				$H_d \leq H_{fa}$	$_{ilure,d} =$	(v		k: coefficien	t of friction.	,		
- The co	ontribution of the	cohesior	n and passive	e earth resista	ance are not	t taken into	account.						
	- Partial factors	of safety:	<u>:</u>							- Natural gro	ound layer:		
	Coefficient	t of shear	ring resistan	ce (tan φ')		Ŷφ	1.0						
	Sliding res	istance (F	Rh)			γ _{Rv}	1.1	for ULS		-	φ'ltp,k	26.0 °	
										-	φ'ltp,d	26.0 0	
	Coofficient of f	riction k		1	From 6 F 2	of EN 1007 1	kugrios ha	hugan 1 lagat	in citul and '	1/2 /nrocast co	norotal		
	- coefficient of t	riction, k	<u>.</u>	1	From 6.5.3 (OJ EN 1997-1	, к varies bei	ween 1 (cast	in situ) ana 2	2/3 (precast co	ncrete)		
			Vd	Hfailure,max	Hd								
Case	Name	Туре	kN	kN	kN	Check							
1	Normal Extrem	ULS	24,513	10,869	919	ОК							
2	Normal Extrem I	t ULS	14,708	6,521	919	ОК							
4	Abnormal 1 Abnormal 1 bis	ULS	17,985	7,974	826	OK							
5	Abriormar 1 bis	013	14,713	0,524	820	UK							
							-						
					5101								
					DYN		AIIONAL	SIIFFNESS					
Tho d	voamic rotational	ctiffnocc	is ostimator	l according to	the followi	ing equation	n Ison rofor	oncos [4] and	4 [5]).			8 G	R^3 $(1, D)$
- me u	ynanne rotationar	sunness	is estimated		the followi	ing equation	i (see reier	ences [4] and	1[5]).		K	$_{DYN} = \frac{1}{3} \cdot \frac{DIN}{(1-v)}$	$\overline{\beta_1} \cdot \beta_1 \cdot \left(\frac{1+\overline{2\cdot R}}{2\cdot R} \right)$
	- The dynamic ro	otational	stiffness is t	o be verified	for all the lo	oad cases w	here the wi	nd turbine is	producing			() 、 /
	- Gdyn is the she	ear modu	lus for the r	ange of shear	strain betw	veen 10 ⁻⁵ an	d 10 ⁻³ .						
	- R is the radius	of the fou	undation = =	>	8.50 m								
	- β1 is a reductio	on factor	depending of	on the ratio b	etween the	total area c	of the found	lation and th	e compress	sed one (due	to eccentrio	tity), see [4].	
	- D is the embed	lment of	the foundat	ion, here :		2.8	m						
	- The embedme	nt D cons	idered in thi	is case :		1.0	m						
- Accor	ding to the load d	ocument		$K_{\varphi,dyn,Min}$	80.0	GNm/rad							
					80,000	MNm/rad							
- Gdyn	is weighted over a	a depth e	quivalent to	:	Beff								
- Is the	embedment to be	e conside	red?		Yes								
- Verifi	cations:					a/#	01	Cdup		V			
		Cara	Namo		Tuno	eγψ	рі	MADo	v	NAN m /rad	Check		
		Case	Name		Type	-	-	IVIPd	-	IVIINIII/Tau			
		3	Normal Ext	rem	SLS	0.18	0.90	35.55	0.33	82.504	ОК		
		5			010	0.10	0.50	20.00	0.00	-2,004			
		6	Quasiperm	anent	SLS	0.12	1.00	35.55	0.33	92,006	ОК		
										- · ·			

APÉNDICE 4.2.2 CÁLCULO A PARTIR DE DEL EUROCÓDIGO 7.

APÉNDICE 4.3 ESTIMACIÓN DE ASIENTOS.

PARQUE EÓLICO DE COAHUILA (MÉXICO)

ANÁLISIS DE DEFORMACIONES Y DESPLAZAMIENTOS

TABLA DE CONTENIDOS

1	ANÁLISIS DE DEFORMACIONES Y DESPLAZAMIENTOS	. 2
1.1	OBJETIVO	. 2
1.2	CARGAS	. 2
1.3	MODELO	. 2
1.4	RESULTADOS	4

1.1 OBJETIVO

El objetivo de este apéndice es llevar a cabo un análisis de las deformaciones y desplazamientos del terreno debidos a la instalación de aerogeneradores en el Parque Eólico de Coahuila.

1.2 CARGAS

Las cargas empleadas para la verificación del estado límite de servicio (SLS) son las que se encuentran en la Tabla 5 del documento FOUNDATION LOADS FOR G114_2.1MW T80 & T93 FOR EOLICA DE COAHUILA WIND FARM (F12-22-144 v1.0). Dichas cargas no han sido factorizadas, tal y como se especifica en el citado documento.

Se resumen las cargas utilizadas en la siguiente tabla:

Caso do carga	Factor de seguridad	Fuerza Vertical	Momento	Fuerza Horizontal
Caso de Carga	-	[kN]	[kN.m]	[kN]
dlc21_ovs_hn_s9	1	2930,29	49089,60	3112,70

Tabla 1-1. Caso de carga para verificaciones geotécnicas.

El momento se aplica como un par de fuerzas de igual valor, pero dirección opuesta.

1.3 MODELO

El análisis de los asientos diferenciales durante la vida útil de la estructura se ha realizado para el modelo de terreno constituido por la unidad geotécnica UG2.

Para el análisis en 3D se ha empleado el software de elementos finitos Plaxis3DFoundation[©].

Se han aplicado las condiciones de contorno típicas de los cálculos de modelos de elementos finitos, restringiendo los desplazamientos horizontales en los contornos verticales, y los desplazamientos verticales en la base del modelo.

Las propiedades del terreno se caracterizan a través del modelo constitutivo de Mohr-Coulomb, el cual se utiliza para representar todas las capas del suelo así como la cimentación. Para esta última, se utilizan unos parámetros muy altos de resistencia al corte, ya que el propósito del modelo no es definir las tensiones dentro de la propia cimentación, sino dentro del suelo.

Las propiedades de la UG2 utilizadas en el cálculo se detallan en la tabla siguiente:

	Unidad Geotécnica	Y kN∕m³	cu kPa	φ' °	c' kPa	E' MPa
UG2	Arcilla limosa	19	190	26	20	30

Tabla 1-2. Parámetros geotécnicos recomendados para la UG2.

El modelo elaborado para analizar los asientos de la estructura, junto con su malla, se muestra en la Figura 1.1. Dicho modelo tiene una profundidad de 40 m y un área de 75x75 m².

Figura 1.1. Modelo de elementos finites 3D. Visión general de la malla.

Para poder ver en detalle la geometría del modelo, en la Figura 1.2 se incluye un corte de la sección de la zapata.

1.4 RESULTADOS

De acuerdo con las referencias habituales para las cimentaciones de aerogeneradores, los requisitos en cuanto a los asientos diferenciales de la cimentación son los siguientes:

• Un asiento diferencial máxima de 3 mm/m resultante de la carga extrema característica.

Se muestra a continuación los asientos debidos al peso de la turbina (en parada). Los resultados se dan a cota de cimentación.

Figura 1.3. Asientos debidos a la carga vertical (turbina). Resultados a cota de cimentación.

En la siguiente figura se muestran los asientos debidos al peso de la turbina y el viento (carga característica extrema en estado límite de servicio (SLS)). Los resultados se dan a cota de cimentación.

A partir de los cálculos realizados, se obtiene un asiento diferencial entre los extremos de la zapata de 1,73 mm/m, menor al asiento diferencial máximo admisible de 3mm/m.

APÉNDICE 5 COMPROBACIONES GEOTÉCNICAS. MODELO DE SUELO UG3.

APÉNDICE 5.1 CAPACIDAD PORTANTE.

APÉNDICE 5.1.1 COMPROBACIÓN A PARTIR DE NTC.

	Project	N°.	Name												
	rioleci	WE1692	Parque	Eólico	o de Coahui	la	Ground Mo	del	UG3						
	Wind Turbine Model	G114-2.1MW Class IIIc													
CONSULTORE Y ARQUITECTO	ES Load Document	F12-22-244 v1.0		JS											
		OLOTECHINICAL VERI	ICAIIOI	40											
	<u>B</u>	EARING CAPACITY (GR	OUND	NOT	IMPROVE	D) BASED (ON BRINCH	I-HANSEN	FORMUL/	A - DRAINE	D CONDITIO	<u>ons</u>			
- M	ethod according to:	Analytical formulation	of NTC												
-	Partial factors of safety:						- Short te	erm equatior	1:	$\sum Q \cdot F_c$	$= c \cdot N \cdot F$	$r + p_{}$			
	Effective cohesion (c')				a	1.00				Aeff	u c	r · rv			
	Bearing resistance (Rv))			F _r	0.35									
							- Long te	rm equation	:	$\sum Q \cdot F_c$	$-\begin{bmatrix} - \\ - \end{bmatrix} (N)$	$\gamma \cdot Be$	$ff \cdot N_{\gamma}$	L 12	
										Aeff	$- \begin{bmatrix} p_V \cdot (w_q) \end{bmatrix}$	-1)+	2 r_r	$+ p_V$	
						GROUN	D DATA								
					case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Bulk unit we	eight of soil above foundatio	n level	γsup		25.0	25.0	25.0	25.0	25.0	25.0					kN/m ³
Bulk unit we	ight of soil below foundatio	n level	γinf		25.0	25.0	25.0	25.0	25.0	25.0					kN/m ³
Cohesion (w	eighted over 1.5-Beff)		c'd		210.0	210.0	210.0	210.0	210.0	210.0					kN/m ²
Angle of frict	tion (weighted over 1.5·Befl ohesion (below 1.5·Beff)	f)	φ'd Cu		28.0 350.0	28.0 350.0	28.0 350.0	28.0 350.0	28.0 350.0	28.0 350.0					v
			U.												KN/III
						GEOMETR	ICAL DATA								
Den	oth of the foundation level			D =	2.8	meters belo	ow ground le	evel							
Nor	n-effective depth (depth not	taken into account to cor	npute the	e ove	rburden)			0.0	m						
					case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Effe	ective length ective Width		Leff Beff		13.5 9.2	11.2 5.5	13.5 9.2	12.6 7.5	11.5 5.9	14.2 11.2					m m
						LOAD	DATA								
					case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Des	ign Horizontal Load			Hd	919	919	613	826	826	417					kN
Des	ign Vertical Load			Vd	24,513	14,708	16,342	17,985	14,715	16,391					kN
Incl	ination of the load along B ¹¹	.)		δв	0.037	0.062	0.037	0.046	0.056	0.025					rad o
(1) N	No inclination considered along	ą L			2.15	3.58	2.15	2.03	3.21	1.40					
	-			FAC	IORS OF 1	HE BEARIN	IG CAPAC	ITY EQUATI	<u>ON</u>						
			N		case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
			NQ NC		20.9 5.9	19.8 5.6	20.9	20.5 5.8	20.1 5.7	21.4 6.1					
			Nγ		14.0	13.3	14.0	13.7	13.5	14.3					
						(Daff	() (
$N_q = e^{\pi}$	$r \tan \phi \cdot \tan^2 \left(45 + \frac{\phi}{2} \right) \cdot \left(1 + 1 \right)$	$\tan\phi$ $\cdot (1 - \tan\delta)^2$			$N_c = 5.1$	$4 \cdot (1 + 0.25)$	$D_{Beff} + 0$	$0.25 \cdot \frac{Bejj}{L}$.eff) (1 -	$(\tan \delta)^2$	$N_{\gamma} =$	$2 \cdot (N_q + 1)$	$\tan \phi \cdot 0.6$		
					RESULTS	FOR LON	g term ai	VALYSIS							
					_										
					case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	Design Bearing Resista	nce	qd		1116.8	851.2	1116.8	996.7	884.2	1272.7					kPa
	Design Bearing Pressur	re	oref		198.8	237.7	132.5	191.5	216.8	102.4					кРа
	othization factor		/ bearing		1070	2070	1270	1970	2370	070		Δ =	$\frac{R_d}{=}\sigma_d$	ref	
												Bearing	$/S_d$	$/q_d$	
					RESULTS	FOR SHO	rt term a	NALYSIS							
					core 1	ccco 0	cccc 2	core 1	core 5	core 4	conc 7	cccc 9	6000 Q	ccco 10	
	Design Bearing Resista	nce	qd		797.12	761.61	797.12	781.87	769,25	823.13	cuse /	Cuse o	Cuse 7	cuse 10	kPa
	Design bearing pressur	re	σref	_	198.8	237.7	132.5	191.5	216.8	102.4	_				kPa
	Utilization factor		Λ_{bearing}		25%	31%	17%	24%	28%	12%			R / -	/	-
												$\Lambda_{Bearing} =$	$\frac{n_d}{S_d} = \sigma_1$	$\left q_{a} \right $	
												L	, u .	, - <i>u</i>	

APÉNDICE 5.1.2 CÁLCULO A PARTIR DE DEL EUROCÓDIGO 7.

	Project	N°.	Name											
	riojeci	WE169	92 Parque Eólic	o de Coah	uila	Ground Mc	del	UG3						
TYPSA	Wind Turbine Ma	del G114-	2.1MW Class Illa					-						
INGENIEROS CONSULTORES	Load Document	F12-22	2-244 v1.0											
Y ARQUITECTOS	Sheet Title	GEOT	ECHNICAL VERIFI	CATIONS										
		<u>B</u>	EARING CAPAC	<u>CITY BASE</u>	D ON BRIN	CH-HANSE	N FORMU	<u>LA - DRAIN</u>	IED COND	<u>ITIONS</u>				
<u>- ivietn</u>	nod according to:	Analytical form	ulation of Euroco	de / with	the partial fa	ctor method	1 OT EN 1997	-1		Design App	proach	2		
	Dortial factor	a of cofotu												
	- Partial factor	s or sarety:					4.00							
		Coefficient of s	nearing resistance	e (tan φ [.])		Ŷφ	1.00	R/	-a'N	a i 1 a	Nai	1	Na	;
		Boaring resista				Yc'	1.00	A_{eff}	$-c m_c$	$s_c i_c + q$	$\mathbf{v}_q \mathbf{v}_q \mathbf{v}_q$	$\frac{1}{2}$	$_{eff} \cdot \mathbf{v}_{\gamma} \cdot \mathbf{s}_{\gamma}$	$ \eta_{\gamma} $
		Bearing resistar	nce (KV)			Ϋ́Rv	1.40							
					G		TA							
					<u>×</u>		<u></u>							
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
				ULS	ULS	SLS	ULS	ULS	SLS					
Bulk unit weigh	nt of soil above fou	ndation level	γsup	25.0	25.0	25.0	25.0	25.0	25.0					kN/m³
Bulk unit weigh	nt of soil below fou	ndation level	γinf	25.0	25.0	25.0	25.0	25.0	25.0					kN/m ³
Cohesion (weig	ghted over 1.5·Beff])	c'd	210.0	210.0	210.0	210.0	210.0	210.0					kN/m²
Angle of friction	n (weighted over 1	.5·Beff)	φ'd	28.0	28.0	28.0	28.0	28.0	28.0					0
					GEC	METRICAL	DATA							
Denth	of the foundation	level	D -	2	8 meters hel	ow ground L	evel							
Non-ef	ffective depth (dep	th not taken int	o account to com	. 2. pute the c	overburden)	S W BIOUIIU I	1.0	m						
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Effectiv	ive length		Leff	13.2	11.9	13.5	12.6	11.5	14.2					m
Effectiv	ive Width		Beff	8.5	6.4	9.2	7.5	5.9	11.2					m
						LOAD DAT	<u>A</u>							
				core 1	care 2	care 3	case 1	care 5	case 6	core 7	case 8	care 0	case 10	
Design	Horizontal Load		на	010	010	613	826	826	/117	cuse /	cuse o	cuse 7	cuse 10	kN
Design	Vertical Load		Vd	22 062	16 342	16 342	17 985	14 715	16 391					kN
Inclina	tion of the load alo	ong B ⁽¹⁾	δв	0.042	0.056	0.037	0.046	0.056	0.025					rad
		0		2.39	3.22	2.15	2.63	3.21	1.46					0
(1) No i	inclination considered	l along L												
				FACTO	<u>RS OF THE B</u>	BEARING C	APACITY E	QUATION						
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	Bearing factors (N)	Nq	14.7	14.7	14.7	14.7	14.7	14.7					
			Nc	25.8	25.8	25.8	25.8	25.8	25.8					
			Νγ	10.9	10.9	10.9	10.9	10.9	10.9					
	Shape factors (s)		sq	1.30	1.25	1.32	1.28	1.24	1.37					
			SC	1.33	1.27	1.34	1.30	1.26	1.40					
		(1)	sγ	0.74	0.78	0.73	0.76	0.80	0.68					
	Inclination facto	rs (I)	iq	0.98	0.97	0.99	0.98	0.97	0.99					
			IC iv	0.98	0.97	0.98	0.97	0.96	0.99					
			ıγ	1.61	1.65	1.60	1.62	1.66	1 56					
	2((p)		(p		1.00	1.05	1.00		/		<u>\</u> ¬m+1		
$N_q = e^{\pi \cdot \tan \varphi}$	$\tan^2\left(\frac{45+\varphi}{2}\right)$	$s_q = 1 + \left \frac{D_{eff}}{I} \right \cdot s_q$	$en\phi' \mid s_{\gamma} = 1 - 0$	$0.4 \cdot \left \frac{B_{eff}}{I} \right $	$\ _{i} = 1$	_(Hd)	$ _{i} - _{1}$	_(Hd		2 +	B_{eff}/L_{eff}
$N_c = (N_a -$	-1) $\cdot \cot \varphi'$	(L _{eff})		L_{eff}		$\sqrt{Vd + A}$	$A_{eff} \cdot C' \cdot c$	$\cot \varphi'$		$\left(Vd + A_{e} \right)$	$f \cdot C' \cdot \cot$	$ \varphi' $	mere $m = \frac{1}{1 + 1}$	B _{eff} /L _{eff}
		$s_{q} = \frac{\left(s_{q} \cdot N_{q} - \frac{s_{q}}{s_{q}}\right)}{s_{q}}$	$\frac{-1}{i}$ $i = i$	$1-i_q$									L	/ ~ 1
$N_{\gamma} = 1.5 \cdot (N_{\gamma})$	$v_q - 1$) $\cdot \tan \phi'$	$\binom{N_q-1}{q}$) $r_c r_q N$	$c_c \cdot \tan \varphi'$		(2) The inclir	nation of the f	foundation ba	se (b terms)	is not been tal	ken into acco	unt (flat base)		
						RESULTS								
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	q - term : $q^{(3)} \cdot N$	q · bq · sq · iq		844.9	802.9	860.9	826.3	794.3	900.0					kPa
	c - term : c' · Nc ·	bc · sc · ic		7017.8	6648.0	7158.6	6854.1	6572.9	7503.0					kPa
	γ - term : 0.5 \cdot γ inf \cdot Beff \cdot N γ \cdot b γ \cdot s γ \cdot i γ					889.7	748.3	607.5	1037.7					kPa
	Bearing resistant	R/A _{eff}	8696.9	8103.0	8909.1	8428.7	7974.7	9440.7					kPa	
	Design Bearing R	6212.1	5787.8	6363.7	6020.5	5696.2	6743.4					kPa kDo		
	Utilization factor	ressure	orer Λ.	190.2	214.3	132.5	3%	210.8	102.4	_				кга -
	(3) g is the overhu	rden at foundation	' ' bearing つ level (vsup・D)		470	270	378	470	270		$R_{auxin} = \frac{R_d}{R_d}$	$\sigma = \sigma_{ref}$		
		,	$v \to v = r$							Ľ		$\boldsymbol{S}_d / \boldsymbol{q}_d$		

	Project	N°.	Name					-						
	riojeci	WE1692	Parque Eól	lico de Coahui	la	Ground M	odel	UG3						
TYPSA	Wind Turbine Model	G114-2.1MW	' Class Illa											
CONSULTORES	S Load Document	F12-22-244 v	1.0											
	Sheet Title	GEOTECHNIC	CAL VERIFIC	ations										
		REARING C												
											<u>-</u>			
	Method according to:	Analytical for	mulation of	f Eurocode 7	with the p	artial facto	r method c	of EN 1997-	-1		Design App	oroach	2	
	Undrained strenght		Υ _{cu}	1.0		R/	(-]			
	Bearing resistance (Rv)		$\Upsilon_{\rm Rv}$	1.4		/A	eff = ()	(+2)	$C_u \cdot S_c$	$r_c + q$				
						/ (-JJ]			
					CPO									
					GRO	UND DAI	<u>A</u>							
				core l	case 2	care 3	case 1	case 5	case 6	case 7	care 8	case 0	case 10	
				ULS	ULS	SLS	ULS	ULS	SLS	cuse /	cuse o	cuse /	cuse ro	
Bulk unit we	eight of the soil above founda	tion level	γsup	25.0	25.0	25.0	25.0	25.0	25.0					kN/m³
Undrained c	cohesion (below 1.5·Beff)		Cu	350.0	350.0	350.0	350.0	350.0	350.0					kN/m ²
					GEOM		ΔΤΔ							
					OLOM									
Dep	oth of the foundation level		D	2.8	meters be	low ground	l level							
				core l	case 2	care 3	case 1	case 5	case 6	case 7	care 8	case 0	case 10	
Effe	ective length		Leff	13.2	11.9	13.5	12.6	11.5	14.2	cuse /	cuse o	cuse /	cuse ro	m
Effe	ective Width		Beff	8.5	6.4	9.2	7.5	5.9	11.2					m
					LO	AD DATA								
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Des	sign Horizontal Load		Hd	919.0	919.0	612.7	826.2	826.2	416.7					kN
			<u>E</u>	ACTORS OF	THE BEA	RING CA	PACITY EC	QUATION						
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	Shape factors (s)		SC	1.13	1.11	1.14	1.12	1.10	1.16					
	Inclination factors (I)		IC	0.99	0.99	1.00	0.99	0.99	1.00					
					(B_{acc})	$\langle \rangle$	1	C E	H)				
			S_c	=1+0.2			$i_{c} = \frac{1}{2}$	$ ^{1+}\sqrt{1}$	$-\frac{1}{A' \cdot c}$	with A	$H < A' \cdot c_i$	u		
						ejj /	_		11 ° _u)				
					-	(2) The incli	nation of th	e foundatior	n base (b ter	ms) is not be	een taken into	account (f	flat base)	
					R	ESOLIS								
				core 1	care)	coro 2	core 4	core 5	core h	core 7	coro 9	caro 0	core 10	
	Bearing Pesistanco		R/A	2000.00		2107 12	2070.20	2026.02	21/0 26	cuse /	cuse o	cuse y	cuse 10	kPa
	Design Rearing Resistan	ce	ad	1493 56	1461 20	1505.00	1478 70	1454 20	2149.20 1535 19					kPa
	Design bearing measure		۳~ oref	196 2	214.3	132.5	191 5	216.8	102 4					kPa
	Utilization factor	-	Abearing	13%	15%	9%	13%	15%	7%					-
			ocaring							•				
				г										
					$\Lambda_{Bearing} =$	$\frac{R_d}{c} = 0$	σ_{ref}							
				L		/ 3 _d	$/ q_d$							
1														

APÉNDICE 5.2 DESLIZAMIENTO Y RIGIDEZ ROTACIONAL.

APÉNDICE 5.2.1 COMPROBACIÓN A PARTIR DE NTC.

	Protoct		N°.	N°. Name											
	rrolect		WE1692	Parque Eólico	o de Coahuile	a			Ground M	odel	UG3				
TYPSA	Wind Turbine Ma	odel	G114-2.1M	W Class IIIa											
	Load Document		F12-22-244	4 v1.0											
ARGONECTOS	Sheet Title		GEOTECH	NICAL VERIFI	CATIONS										
				SUDIN	G BETWEE					D					
					O DEI II EL										
- The ge	eneral equation of	verificat	ion is:			((· \)							
					V_d	$_{Min}$ \cdot tan k	∙atan (ta	$\frac{\mathbf{n}\varphi_{ltp,k}}{ \mathbf{p} }$							
				$H_{J} \leq H_{L}$			l	Υ _φ))	φ'_{ltp} : angle	of shear resist	ance of the lo	ad tansfer plafo	rm material		
Thore	optribution of the	cohosior	and passive	a ja	anco aro pot	takon into	γ_{Rh}		k: coefficier	it of friction.					
- me co		conesion	i allu passivi	e earth resist	ance are not		account.								
	- Partial factors of	of safety:	<u>.</u>							- Natural gro	ound layer:				
	Coefficient	of shear	ring resistan	ce (tan φ')		γ_{Φ}	1.0			_					
	Sliding resi	stance (F	Rh)			Ϋ́Rv	1.1	for ULS			φ'ltp,k	28.0 °			
											φ'ltp,d	28.0 °			
		Coefficient of fuiction lu													
	- Coefficient of fr	riction, k	<u>:</u>	1	From 6.5.3 (of EN 1997-1,	k varies bei	tween 1 (cast i	in situ) and .	2/3 (precast co	ncrete)				
			Vd	Hfailure.max	Hd										
Case	Name	Туре	kN	kN	kN	Check									
1	Normal Extrem	ULS	24,513	11,849	919	ОК									
2	Normal Extrem t	ULS	14,708	7,109	919	ОК									
			47.005	0.000	000	01									
4	Abnormal 1 Abnormal 1 bis	ULS	17,985 14 715	8,693 7 113	826 826	OK									
5	, 10110111111111010	010	1 1)7 10	,,110	020	- On									
					DYN	AMIC ROTA		STIFFNESS							
					<u></u>	<u>which ten</u>		0111111200							
- The d	ynamic rotational	stiffness	is estimated	d according to	o the followi	ng equation	(see refer	ences [4] and	d [5]):		K	$=\frac{8}{G_{DYN}}$	$\frac{PR^3}{N} \cdot \beta_1 \cdot \left(1 + \frac{D}{N}\right)$		
											φ,1	3 (1-1	v) $(2\cdot R)$		
	- The dynamic ro	tational	stiffness is t	o be verified	for all the lo	ad cases wh	ere the wi	nd turbine is	producing						
	- Gdyn is the she	ar modu	lus for the r	ange of shear	r strain betw	een 10 ⁻³ an	d 10 ⁻³ .								
	- R is the radius t	n factor	doponding (- > on the ratio h	8.50 m	total area o	f the found	lation and th	o compros	cod ono (duo	to occontric	ity) coo [4]			
	- D is the embed	ment of	the foundat	ion here .	etweenthe	2 8	m		e compres	seu one (uue	to eccentric	1197, See [4].			
	- The embedmen	t D cons	idered in th	is case :		1.0	m								
- Accor	ding to the load do	ocument	:	K _{φ,dyn,Min}	80.0	GNm/rad									
- The er	mbedment D consi	idered in	this case :		80,000	MNm/rad									
- Gdyn	is weighted over a	depth e	quivalent to	:	Beff										
- Is the	embedment to be	conside	red?		Yes										
- Verific	cations:					- (Ф	01	Calum		K					
		Cara	Namo		Tuno	e/Ψ	pı	Guyn	v	NAN m /rad	Check				
		Case	Name		туре	-	-	IVIPd	-	www.					
		3	Normal Ext	rem	SI S	0.18	0 90	118 52	0 33	275.060	ОК				
		5		licin	525	0.10	0.50	110.52	0.55	275,000	ÖK				
		6	Quasiperm	anent	SLS	0.12	1.00	118.52	0.33	306,737	ОК				
										- · ·					

APÉNDICE 5.2.2 CÁLCULO A PARTIR DE DEL EUROCÓDIGO 7.

APÉNDICE 6 COMPROBACIONES GEOTÉCNICAS. MODELO DE SUELO UG4 FRACTURADO.

APÉNDICE 6.1 CAPACIDAD PORTANTE.

APÉNDICE 6.1.1 COMPROBACIÓN A PARTIR DE NTC.

	Den 1		N°.	Name													
	Proj	ect	WE1692	Parque E	ólico de	Coahui	la	Ground Mc	del	UG4 (caliz	a fracturada)						
TYPS	SA Win	d Turbine Model	G114-2.1MW Class Illa														
CONSULT Y ARQUITE	EROS TORES Load	Document	F12-22-244 v1.0														
	She	et Title	GEOTECHNICAL VERIF	ICATIONS	5												
		BE	ARING CAPACITY (GR	OUNDN	ot imi	PROVE) BASED (ON BRINCH	I-HANSEN	FORMULA	- DRAINE	D CONDITI	<u>ONS</u>				
-	Method ace	cording to:	Analytical formulation	of NTC													
	- <u>Partial fa</u>	ctors of safety:						- Short te	rm equatio	n:	$\frac{\sum Q \cdot F_c}{Aeff}$	$= c_u \cdot N_c \cdot H$	$\vec{F}_r + p_V$				
	Effe	ctive cohesion (c')				α 1.00											
	Bea	ring resistance (Rv)				Fr	0.35										
								- Long te	rm equation	1:	$\frac{\sum Q \cdot F_c}{Aeff}$	$= \left\lfloor \overline{p}_V \cdot \left(N_q \right) \right\rfloor$	$(-1)+\frac{\gamma \cdot Bej}{2}$	$\frac{f \cdot N_{\gamma}}{2} \cdot F_r$	$+ p_V$		
							GROUN	ID DATA									
					C	ase 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10		
						ULS	ULS	SLS	ULS	ULS	SLS						
Bulk unit v	weight of so	oil above foundation	level	γsup	:	27.0	27.0	27.0	27.0	27.0	27.0					kN/m ³	
Bulk unit v	weight of sc	bil below foundation	level	γinf		27.0	27.0	27.0	27.0	27.0	27.0					kN/m ³	
Cohesion	(weighted of	over 1.5·Bett) abted over 1 5·Beff)		ዋ,ዋ C.q		0.0 84 0	0.0 34.0	0.0 34.0	0.0 34.0	0.0 34.0	0.0 34.0					kN/m² ٥	
Undrained	d cohesion (below 1.5.Beff)		ф u c _u		0.0	0.0	0.0	0.0	0.0	0.0					kN/m ²	
							GEOMETR	ICAL DATA									
D	Denth of the	foundation level		Г) =	28	meters bel	ow ground le	vel								
N	Non-effectiv	e depth (depth not t	aken into account to con	npute the (overbu	rden)	meters ben	Sw Broana w	0.0	m							
-						,					_						
					c	ase 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10		
E	ffective len	gth		Leff	:	13.5	11.2	13.5	12.6	11.5	14.2					m	
E	Effective Wio	dth		Beff		9.2	5.5	9.2	7.5	5.9	11.2					m	
							LOAD	DATA									
							10/10										
					C	ase 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10		
D	Design Horiz	ontal Load		ŀ	Ηd	919	919	613	826	826	417					kN	
D	Design Vertie	cal Load		`	/d 24	4,513	14,708	16,342	17,985	14,715	16,391					kN	
Ir	nclination o	f the load along B ⁽¹⁾			δв С	.037	0.062	0.037	0.046	0.056	0.025					rad	
1	1) No inclinat	ion considered along I	1		1	2.15	3.58	2.15	2.63	3.21	1.46					0	
-)	1) NO INCIINAL	ion considered diong L	-	E	ACTOR	S OF T		IG CAPAC	TY EQUAT	ION							
					C	ase 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10		
				Nq		45.7	43.3	45.7	44.9	43.9	46.8						
				Nc		5.9	5.6	5.9	5.8	5.7	6.1						
				Νγ	3	37.8	35.9	37.8	37.1	36.4	38.7						
$N_q =$	$e^{\pi \cdot \tan \phi} \cdot \tan \phi$	$^{2}\left(45 + \frac{\phi}{2}\right) \cdot \left(1 + \tan \theta\right)$	$(\ln \phi) \cdot (1 - \tan \delta)^2$		N	_c = 5.14	$4 \cdot (1 + 0.25)$	$D_{Beff} + 0$	$0.25 \cdot \frac{Beff}{l}$	$\left(1-1\right)$	$(\tan \delta)^2$	$N_{\gamma} =$	$2 \cdot (N_q + 1)$	$\tan \phi \cdot 0.6$			
					R	ESULTS	FOR LON	g term ai	ALYSIS								
						1		2	4	F	4	7	0	0	10		
	Dec	ian Rooring Posiston	60	ad	2		case 2	case 3	case 4	case D	case 0	case /	case 8	case 9	case 10	kDo	
	Desi	ign Bearing Resistan		qu	20	08 8	2129.7	132.5	2545.8	2222.7	3341.0 102.4					KPd kDa	
	Utili	zation factor		Δ	1	7%	11%	5%	8%	10%	3%					кга -	
				- Dearing								•	Δ =	$\overline{R_d} = \sigma_r$	ref /		
													Bearing	S_d	$/q_{d}$		
1																	

APÉNDICE 6.1.2 CÁLCULO A PARTIR DE DEL EUROCÓDIGO 7.

	Proiect	N°.	Name											
		WE1692	Parque Eólio	co de Coahu	ila	Ground Mc	del	UG4 (caliza	fracturada)					
TYPSA	Wind Turbine Model	G114-2.1M	W Class IIIa											
CONSULTORES	Load Document	F12-22-244	v1.0											
	Sheet Litle	GEOTECH	NICAL VERIFI	ICATIONS										
		BEARI	NG CAPA	CITY BASE	D ON BRIN	CH-HANSE	N FORMU	LA - DRAIN	ED COND	ITIONS				
<u>- Metho</u>	od according to: An	alytical formulation	on of Euroco	ode 7 with t	he partial fa	ctor method	l of EN 1997	-1		Design App	oroach	2		
	Deutial factors of	6 f - t												
	- Partial factors of	officient of choori	ng rociston	co (top (o')		N	1.00							
	Eff	fective cohesion (Le (tan ψ)		Υφ	1.00	R/	$= c' \cdot N$	$\cdot s \cdot i + a$	N ·s ·i	$+\frac{1}{\nu'}\cdot B$	$N \cdot s$.j
	Be	aring resistance (I	2 / Rv)			YC VRv	1.40	$/A_{eff}$	C 1, c	$\mathbf{b}_{c} \mathbf{v}_{c} + \mathbf{q}$	r q bq q	2' 2'	eff γ σγ	γ
		0 (,											
					G	ROUND DA	<u>TA</u>							
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Bulk upit weight	t of soil above founda	ation level	VELID	0LS	ULS	SLS	0LS	0LS	SLS 27.0					1.01/3
Bulk unit weight	t of soil below founda	ation level	ysup vinf	27.0	27.0	27.0	27.0	27.0	27.0					kN/m ³
Cohesion (weigh	hted over 1.5.Beff)		c'd	0.0	0.0	0.0	0.0	0.0	0.0					kN/m^2
Angle of friction	n (weighted over 1.5·E	Beff)	φ'd	34.0	34.0	34.0	34.0	34.0	34.0					0
					GEC	METRICAL	DATA							
Denth	of the foundation leve	el	D =	. 29	meters hel	ow ground L	evel							
Non-ef	fective depth (depth r	not taken into acc	ount to con	npute the o	verburden)	Str Broand I	1.0	m	_					
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Effectiv	ve length		Leff	13.2	11.9	13.5	12.6	11.5	14.2					m
Effectiv			bell	6.5	0.4	9.2	7.5	5.9	11.2					m
							A							
							-							
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
Design	Horizontal Load		Hd	919	919	613	826	826	417					kN
Design	Vertical Load	D ⁽¹⁾	Vd مە	22,062	16,342	16,342	17,985	14,715	16,391					kN rad
Inclinat		В	0B	2.39	3.22	2.15	2.63	3.21	1.46					0
(1) No ir	nclination considered alc	ong L												
				FACTOR	<u>S OF THE B</u>	EARING C	APACITY E	QUATION						
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	Bearing factors (N)		Nq	29.4	29.4	29.4	29.4	29.4	29.4					
			Nc	42.2	42.2	42.2	42.2	42.2	42.2					
	Shape factors (s)		Nγ	28.8	28.8	28.8	28.8	28.8	28.8					
	511ape 1actors (5)		sq	1.30	1.30	1.30	1.33	1.2.9	1.44					
			sv	0.74	0.78	0.73	0.76	0.80	0.68					
	Inclination factors (i	i)	ia	0.93	0.91	0.94	0.93	0.91	0.96					
		,	ic	0.93	0.91	0.94	0.92	0.91	0.96					
			iγ	0.90	0.86	0.91	0.88	0.86	0.94					
			m	1.61	1.65	1.60	1.63	1.66	1.56					
$N_q = e^{\pi \cdot \tan \phi'} t$	$\tan^2\left(45 + \frac{\varphi'}{2}\right) _{s} =$	$= 1 + \left(\frac{B_{eff}}{B_{eff}}\right) \cdot sen\phi'$	c =1_(B_{eff}) Г	(Hd	$\big]^m$	П	(Hd		2 +	Ber
	1) a st st	$\left(L_{eff}\right)^{start}$	$s_{\gamma} = 1 - 0$	$\left(\frac{1}{L_{eff}}\right)$	$ i_q = 1 -$	$-\left \frac{1}{Vd+v}\right $	$\frac{1}{4} = C'$	$\frac{1}{\cot \alpha'}$	$ i_{\varphi} = 1 $	$-\left \frac{1}{Vd+A}\right $	$-C' \cdot cot$	$\overline{\sigma'}$	where $m = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$	$\frac{L_{eff}}{B_{eff}}$
$I\mathbf{v}_c = (I\mathbf{v}_q -$		$(s_q \cdot N_q - 1)$		$1-i_a$		(-ejj –			(· · · · · · · e	ett – – – – – – – – – – – – – – – – – –	<i>*)</i>]		$/L_{eff}$
$N_{\gamma} = 1.5 \cdot (N$	$V_q - 1$ $\cdot \tan \phi' = \frac{s_c}{s_c}$	$=$ $\frac{(N_q-1)}{(N_q-1)}$	$i_c = i_q - \frac{1}{N}$	$\sqrt[q]{v_c \cdot \tan \varphi'}$		(2) The inclir	nation of the	foundation ha	se (h terms) i	is not heen ta	ken into acco	unt (flat hase)		
						RESULTS		sundution Du.	50 (D (CIIIIS) I	s not been tu		ant giut buse)		
				case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case 10	
	q - term : q ⁽³⁾ · Nq · ł	bq∙sq∙iq		1820.7	1691.8	1858.3	1764.9	1671.1	1980.1					kPa
	c - term : c' \cdot Nc \cdot bc	· sc · ic		0.0	0.0	0.0	0.0	0.0	0.0					kPa
	γ - term : 0.5 \cdot $\gamma inf \cdot$ Beff \cdot N γ \cdot b γ \cdot s γ \cdot i γ					2345.1	1954.3	1560.5	2796.4					kPa
	Bearing resistance	R/A _{eff}	4019.3	3367.0	4203.4	3719.2	3231.6	4776.4					kPa Ivp	
	Design Bearing Resis	stance sure	ya oref	2870.9 196.2	2405.0 214.3	3002.4 132.5	2656.6 191.5	∠308.3 216.8	3411./ 102.4					кна kPa
	Utilization factor		Λ_{bearing}	7%	9%	4%	7%	9%	3%		a	<u>/ _ /</u>]		-
	(3) q is the overburden	n at foundation level	(γsup·D)							- Λ	$_{Bearing} = \frac{R_d}{2}$	$S_{d} = \frac{\sigma_{ref}}{a}$		
											/ -	u / 4d		

APÉNDICE 6.2 DESLIZAMIENTO Y RIGIDEZ ROTACIONAL.

APÉNDICE 6.2.1 COMPROBACIÓN A PARTIR DE NTC.

	Desta d		N°.	Name										
	Project		WE1692	Parque Eólico	de Coahuila	a			Ground M	odel	UG4 (caliza	fracturada)		
TYPSA	Wind Turbine M	odel	G114-2.1M	AW Class IIIa										
	Load Document		F12-22-24	4 v1.0										
Y ARQUITECTOS	Sheet Title		GEOTECH	NICAL VERIFIC	CATIONS									
	_													
				<u>SLIDIN</u>	G BETWEEN	N FOUND	ATION AN	ID NATURA	L GROUN	<u>D</u>				
		c .c.												
- The ge	eneral equation o	t verifica	ition is:			((ta	n (n))						
					V_{d}	_{Min} ·tan k	atan —	$\frac{\Pi \varphi_{ltp,k}}{\gamma}$, ,		<i>с.</i> , , ,			
				$H_d \leq H_{fa}$	$_{ilure d} =$	(C	Υφ))	φ'_{ltp} : angle	of shear resist	ance of the l	oaa tansjer plajor.	m material	
- The co	ontribution of the	cohesio	n and nassiv	e earth resists	ance are not	taken into	γ_{Rh}		k. LOEJJILIEN	t oj jriction.				
- me co		conesio	ii aliu passiv	e cartin resista	ance are not	laken mito	account.							
	- Partial factors	of safety	<i>I</i> :							- Natural gr	ound laver:			
	Coefficien	t of shea	- ring resistar	re (tan w')		V.	1.0							
	Sliding res	istance (Rh)			V _{Pv}	1.1	for ULS		34.0 °				
			,			TRV				-	φ'ltp.d	34.0 °		
											4.000			
	- Coefficient of f	friction, l	k:	1	From 6.5.3 c	of EN 1997-1	, k varies bet	ween 1 (cast	in situ) and 2	2/3 (precast co	ncrete)			
			_			,								
			Vd	Hfailure,max	Hd									
Case	Name	Туре	kN	kN	kN	Check								
1	Normal Extrem	ULS	24,513	15,031	919	ОК								
2	Normal Extrem	ł ULS	14,708	9,019	919	ОК								
4	Abnormal 1	ULS	17,985	11,028	826	ОК								
5	Abnormal 1 bis	ULS	14,715	9,023	826	ОК								
							-							
					DVN									
								5111114235						
- The d	vnamic rotational	stiffness	s is estimate	d according to	the followi	ng equation	lsee refer	ences [4] and	d (51).		V	$8 G_{DYN}$	$R^{3} \left(1 D \right)$	
- The u	ynanne rotational	sumes.	s is estimate			ing equation	i (see reien		u [J]).		κ _φ	$_{,DYN} = \frac{1}{3} \cdot \frac{DIN}{(1-v)}$	$\overline{(1)} \cdot \overline{(1)} \cdot \overline{(1)} + \overline{2 \cdot R}$	
	- The dynamic ro	otationa	l stiffness is t	o be verified	for all the lo	ad cases w	here the wi	nd turbine is	producing			() 、 /	
	- Gdvn is the she	ear mod	ulus for the r	ange of shear	strain betw	een 10 ⁻⁵ an	d 10 ⁻³ .							
	- R is the radius	of the fo	oundation = =	:>	8.50 m									
	- β1 is a reductio	on factor	r depending	on the ratio b	etween the	total area o	of the found	lation and th	e compress	ed one (due	to eccentrio	city), see [4].		
	- D is the embed	iment of	the foundat	ion. here :		2.8	m							
	- The embedme	nt D con	sidered in th	is case :		1.0	m							
- Accor	ding to the load d	ocumen	t:	K.	80.0	GNm/rad								
,	to the load u	Soundli		· ·φ,αyn,Min	80.000	MNm/rad								
					22,000									
- Gdvn	is weighted over a	a denth 4	equivalent to):	Beff									
- Is the	embedment to be	e conside	ered?		Yes									
.5 (1)					.05									
- Verific	cations:													
						e/Φ	β1	Gdyn	v	K _{dun}	-			
		Case	Name		Type		-	MPa	-	MNm/rad	Check			
					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					,				
		3	Normal Fv	trem	515	0 18	0.90	154 07	0 33	357 564	ОК			
		5			515	0.10	0.00		0.00	,004				
		6	Quasinerm	anent	SI S	0 1 2	1 00	154 07	0.33	398 742	OK –			
		0	Quasiperii	unent	JLJ	0.12	1.00	134.07	0.35	330,742				
APÉNDICE 6.2.2 CÁLCULO A PARTIR DE DEL EUROCÓDIGO 7.

APÉNDICE 7 COMPROBACIONES GEOTÉCNICAS. MODELO DE SUELO UG4 ROCA SANA.

APÉNDICE 7.1 CAPACIDAD PORTANTE.

APÉNDICE 7.1.1 COMPROBACIÓN A PARTIR DE CFE.

APÉNDICE 7.1.1.1 ZAPATA DESPLANTADA A 2,8 MBGL.

APÉNDICE 7.1.1.2 ZAPATA DESPLANTADA A 2,0 MBGL.

APÉNDICE 7.1.2

CÁLCULO A PARTIR DE DEL EUROCÓDIGO 7 Y ROM 0.5-05.

APÉNDICE 7.1.2.1 ZAPATA DESPLANTADA A 2,8 MBGL.

Exiremely close	< Z
Very close	2 a 6
Close	6 a 20
Medium	20 a 60
Wide	60 a 200
Very wide	200 a 600
Extremely wide	> 600

Very Low 1 - 5 Low 5 - 25 25 - 50 Average High 50 - 100 100 - 250 Very High Extremely high > 250

Weathering Grade	Factor f _A
W1	1.0
W2	0.7
W3	0.5

If weathering grade \geq W4, rock is to be considered as a soil for calculation.

Table 4: Weathering Grades according to BGD (ISRM 1981)

Term	Description	Symbols
Fresh	No visible sign of rock material weathering; perhaps slight discolouration on major discontinuity surfaces	W1
Slighlty Weathered	Discolouration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discoloured by weathering and may be somewhat weaker than its fresh condition.	W2
Moderately Weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a discontinuous framework or as core stones.	W3
Highly Weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a discontinuous framework or as core stones	W4
Completely weathered	All rock material is decomposed and / or disintegrated to a soil. The original mass structure is still largely intact.	W5

APÉNDICE 7.1.2.2 ZAPATA DESPLANTADA A 2,0 MBGL.

Extremely close	< 2
Very close	2 a 6
Close	6 a 20
Medium	20 a 60
Wide	60 a 200
Very wide	200 a 600
Extremely wide	> 600

Very Low 1 - 5 Low 5 - 25 25 - 50 Average High 50 - 100 100 - 250 Very High Extremely high > 250

Weathering Grade	Factor f _A
W1	1.0
W2	0.7
W3	0.5

If weathering grade \geq W4, rock is to be considered as a soil for calculation.

Table 4: Weathering Grades according to BGD (ISRM 1981)

Term	Description	Symbols
Fresh	No visible sign of rock material weathering; perhaps slight discolouration on major discontinuity surfaces	W1
Slighlty Weathered	Discolouration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discoloured by weathering and may be somewhat weaker than its fresh condition.	W2
Moderately Weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a discontinuous framework or as core stones.	W3
Highly Weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a discontinuous framework or as core stones	W4
Completely weathered	All rock material is decomposed and / or disintegrated to a soil. The original mass structure is still largely intact.	W5

